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Abstract. Non-interactive zero-knowledge proof or argument (NIZK) systems

are widely used in many security sensitive applications to enhance computa-

tion integrity, privacy and scalability. In such systems, a prover wants to con-

vince one or more veri�ers that the result of a public function is correctly com-

puted without revealing the (potential) private input, such as the witness. In

this work, we introduce a new notion, called succinct scriptable NIZK, where

the prover and veri�er(s) can specify the function (or language instance) to be

proven via a script. We formalize this notion is UC framework and provide a

generic trusted hardware based solution. We then instantiate our solution in

both SGX and Trustzone with Lua script engine. �e system can be easily used by

typical programmers without any cryptographic background. �e benchmark

result shows that our solution is be�er than all the known NIZK proof systems

w.r.t. prover’s running time (1000 times faster), veri�er’s running time, and the

proof size. Finally, we show how the proposed scriptable succinct NIZK can be

readily deployed to solve many well-known problems in the blockchain context,

e.g. veri�er’s dilemma, fast joining for new players, etc.

1 Introduction

Collaboration is one of the main driving forces for the sustainable advancement of

our civilization, growing from small-size tributes, to cities, and then to large-scale

states. Being a part of the modern society, we are interacting with hundreds of

known/unknown entities either physically or remotely. �e main motivation of this

work is to introduce new concepts and frameworks to enable more e�ective collabo-

rations. One potential candidate tool is a well-known cryptographic primitive—zero

knowledge (ZK) proof/argument system. In a ZK system, two players, the prover and

the veri�er, are involved; one one hand, the prover who holds a valid witness of an NP

statement, is able to convince the veri�er that the statement is true without revealing

the corresponding witness; on the other hand, if the prover does not know any valid

witness of the statement, then he cannot convince the veri�er. ZK systems can be used

to enable trustworthy collaborations: all players in a protocol are required to prove the

correctness of their behaviors in the protocol execution. However, to enable e�ective

collaborations, desired properties are expected, and we will elaborate them below.

Our design choices. In a large-scale collaboration network, it is infeasible for a party

to prove the correctness of its computation to all other parties one by one. �e �rst



property we need from ZK systems, is (1) non-interactiveness in the sense that the

prover only needs to prove the correctness of the computation once, and the prover

then can send the same proof to all other parties i.e., the veri�ers. From now on, we

use NIZK to denote non-interactive ZK systems. �e second desirable property we

need is (2) succinctness, given the fact that the bo�leneck for large-scale collaboration

is the capacity of the underlying peer-to-peer network communication. Furthermore,

as already mentioned, we note that in a typical application scenario a single prover

will prove the same statement to many veri�ers. In this unbalanced se�ing, a desirable

NIZK proof system should have the property of (3) lightning fast veri�er.

Up to now, those properties have already been achieved by a number of existing

NIZK proof systems, such as zk-SNARK [16, 34], zk-STARK [3], etc. However, these

NIZK systems have not been widely used in practice yet. A signi�cant barrier is the

that the computation of prover is very heavy. �e state-of-the-art NIZK systems need

hours to prove large statement even on a powerful PC (32 cores and 512 GB RAM [3]),

let alone portable devices such as smartphones, tablets, and IoT devices. We aim to

develop a NIZK system with the property of (4) truly lightweight prover.

To enable wide adoption of NIZK in the real world, the design must be (5) de-

ployment friendly. �e underlying cryptographic machinery should be transparent to

the developers, and the protocol can be operated without cryptographic background.

Unfortunately, all existing NIZK proof systems for universal language require re-

compilation of both prover and veri�er’s executable binary �les for every new lan-

guage instance.

Our approach. We propose a new primitive, called succinct scriptable NIZK, with the

goal of achieving all desirable properties above. �is new primitive allows the develop-

ers to specify the language instance or computation to be veri�ed via a script without

any re-compilation. Similar to NIZK proof systems for universal language, a scriptable

NIZK system can support multiple language instances, depending on the script lan-

guage design and the script engine execution environment. Di�erent from existing

succinct NIZK systems for universal language, our scriptable NIZK is very easy to use;

for a new language instance, the players can easily de�ne the scripts and no further

compilation is required.

De�ning scriptable NIZK. We assume both the prover and the veri�ers have agreed on

the function/script, denoted as C, the public input, denoted as Inputpub, and the (public)

output, denoted as Output; in addition, the prover keeps a private input, denoted as

Inputpriv, such that C(Inputpub, Inputpriv) = Output. �e prover is able to prove to the

veri�ers that he knows a private input Inputpriv that would make the script execution

C(Inputpub, Inputpriv) to generate output Output.

We note that not all scripts can be supported; each scriptable NIZK system is pa-

rameterized by a predicate Q, and Q(C, Inputpub, Inputpriv,Output) = 1 for any valid

script C. �e predicate Q is de�ned by the script language design and the script engine

execution environment.

An NP language L is de�ned by its polynomial-time decidable relationR; namely,

L := {x : ∃w s.t. (x,w) ∈ R}. In practice, for each relation R, we assume there

exists a corresponding script CR such that CR(x,w) = 1 i� (x,w) ∈ R; otherwise,

CR(x,w) = 0. To use the scriptable NIZK system for an NP language, the prover and
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the veri�ers set Inputpub := x, Inputpriv := w, Output := 1, and the script as CR. �e

notion is formally modeled in the UC framework.

Constructing succinct scriptable NIZK. We then present a generic succinct scriptable

NIZK construction in the trusted hardware model. Trusted hardware can enable an

isolated and trusted computation environment where security sensitive data can be

stored and processed with con�dentiality and integrity guarantees. Most existing

trusted hardware based applications, e.g., [15] emphasize on the con�dentiality as-

pect, while the security of our construction mainly relies on the computational in-

tegrity guaranteed by trusted hardware. �e main idea is as follows. Recall that in a

NIZK proof, the prover and the veri�er have common input (CR, Inputpub := x). �e

potentially malicious prover wants to convince the veri�ers that he knows a witness

Inputpriv := w such that CR(Inputpub, Inputpriv) = 1. Since the trusted hardware

can guarantee computation integrity even when the host is malicious, we can letOQ
HW

to execute the relationship decision algorithm b ← CR(x,w) and sign the output b.
To bind the decision algorithm and statement, we let OQ

HW
sign (CR, x, b) without re-

vealing the witness w. �erefore, by checking the signature, the veri�er is convinced

that the prover must know a witness w such that CR(x,w) = 1 if (CR, x, 1) is signed

by OQ
HW

. Similarly, for general computation, the private input Inputpriv is not signed;

therefore, zero-knowledge property is preserved even if the signature leaks the signed

message.

Although there are a number of works in the literature studying how to speed

up secure computing via trusted hardware, such as Intel SGX, we emphasize that this

problem has not been solved by previous works. �e closest related work is sealed-

glass proof introduced by Tramer et al. [40], where the authors try to explore some

use cases even if the isolated execution environment has unbounded leakage, i.e., ar-

bitrary side-channels. We note that, their primitive is interactive, thus not scalable;

in their protocol, for each veri�cation, the trusted hardware must be interacted with.

Our primitive is non-interactive, and in our construction, the veri�er can verify the

proof without interacting with the trusted hardware. �ere are also many theoreti-

cal di�erences between interactive ZK and non-interactive ZK, such as the minimum

assumptions needed to realize the primitive; therefore, this work is not covered by

[40]. Most importantly, ours is the �rst work to investigate scriptable NIZK, which is

developer-friendly.

Instantiation. We instantiate our succinct scriptable NIZK proof system on two most

popular trusted hardware platforms: Intel SGX and Arm TrustZone. �e main compo-

nent is the Q-compliant hardware functionality OQ
HW

. In terms of Intel SGX, the OQ
HW

functionality is instantiated by three entities: the (trusted) Intel server, the prover, and

the SGX hardware device. In terms of Arm TrustZone, currently only manufacture has

the privilege to access TrustZone root keys; nevertheless, our system uses Hikey 960

TrustZone development board. �e OQ
HW

functionality is instantiated by two entities:

the (trusted) authority server, and the TrustZone development board.

With regard to scriptability, in practice, it is a challenge for a third party to verify

the consistency between an executable binary and its so�ware speci�cation. �at is,

the binary contains no bug, no trapdoor, and it is not subverted. Even if it is possible,

it dramatically increases the veri�er’s complexity. On the other hand, it is implausible
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to assume a trusted third party that is available to generate a certi�ed binary for each

language instance. To address this issue, we decide to adopt a scripting language, called

Lua. Lua is a lightweight script language. We implemented modi�ed Lua script engine

for both Intel SGX enclave computation environment and the TrustZone environment.

At a high level, we let the Intel server and/or the setup authority server to prepare and

sign a Lua engine enclave/binary. �e signed Lua engine is published as a common

reference string (CRS). In addition, the hardware is initialized with a signing key, and

it corresponding public key is also published as a part of the CRS. �e modi�ed Lua

engine takes input as a script C, a public input Inputpub, a private input Inputpriv,

and a tag tag that can be used to store auxiliary information, such as session id. �e

Lua engine runs Output ← C(Inputpub, Inputpriv) and signs 〈C, Inputpub,Output〉.
�erefore, any veri�er who has the public key can verify the signature. �e predicate

Q is restricted by the Lua engine constrain. For instance, there is a �xed heap size,

e.g., 32MB when the Lua engine enclave is built. It limits the maximum script size.

Moreover, as security requirement, one may want to introduce a maximum running

time to prevent the script from running forever. Such a running time cap would also

re�ected by Q.

Recall that scriptable NIZK proofs are typically deployed in a one-to-many sce-

nario, where the prover only needs to invoke the trusted hardware once and many

veri�ers can check the validity of the proof; however, currently, the remote a�estation

of Intel’s SGX requires the veri�er to interact with the Intel A�estation Service (IAS)

server. If each veri�er needs to query the Intel IAS server to check the proof, the over-

all performance is limited by the throughput of Intel’s IAS. Moreover, the validity of a

NIZK proof should be consistent over time, i.e., if a NIZK proof is veri�able at this mo-

ment, the same proof should remain veri�able in the future. Unfortunately, this would

not be the case if we invoke the Intel IAS in the veri�cation process; certifying an old

quote (say, generated 1 year ago) is never the design goal of Intel’s remote a�estation.

�is is because the quote needs to contain a non-revoked proof for each item on the

signature revocation list, and the proof is no longer veri�able once the revocation list

is updated at the Intel side. �at means a quote is only valid until the next revoca-

tion list update. To resolve this issue, in our design, a�er generating the quote, the

prover immediately queries the Intel IAS server for the a�estation veri�cation report

on behave of a veri�er. Since the a�estation veri�cation report is signed by Intel, given

Intel’s public key, anyone can verify the validity of the a�ached signature. �is tweak

also makes the veri�cation process non-interactive.

Performance. �e performance of our succinct scriptable NIZK system is theoreti-

cally and experimentally evaluated and compared with the other NIZK proof systems.

Table 1 illustrates the asymptotic e�ciency comparison measured by the circuit size.

|C| is the circuit size; |w| is the witness size; |c| is the problem instance size; s is the

number of copies of the subcircuits; d is the width of the subcircuits. As we can see,

our construction can achieve constant CRS size, constant veri�er’s complexity, and

constant proof size. �e prover’s complexity is also minimum, which is |C|. Note that

in theory, the veri�er’s complexity cannot be sublinear to the statement size |x|, but

as a convention, it is ignored in the table.
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Scheme Setup size Proof size Prover’s time Veri�er’s time Setup Asm. Comp. Asm.

Ligero 1
√

|C| |C| log |C| s log s+ d log d RO CRHF

Bootle et al. 1
√

|C| |C| |C| RO CRHF

Baum et al.

√
|C|

√
|C| log |C| |C| log |C| |C| CRS SIS

zk-STARKs 1 log2 |C| |C| polylog(|C|) polylog(|C|) RO CRHF

Aurora 1 log2 |C| |C| log |C| |C| RO CRHF

Bulletproof |C| log |C| |C| log |C| |C| log |C| CRS + RO DL

SNARKs |C| 1 |C| log |C| |c| CRS/AGM KE

�is work 1 1 |C| 1 HW Signature

Table 1: Asymptotic e�ciency comparison of di�erent NIZK proof/argument systems.

|C| is the circuit size; |w| is the witness size; |c| is the problem instance size; s is

the number of copies of the subcircuits; d is the width of the subcircuits. DL stands for

discrete logarithm assumption, CRHF stands for collision-resistant hash functions, SIS

stands for shortest integer solution assumption, KE stands for knowledge-of-exponent

assumption, HW stands for trusted hardware model, and AGM stands for algebraic

group model.

In terms of the actual experimental performance. �e prover’s running time for

evaluating a Boolean circuit consisting of 239 NAND gates only takes less than 10 mins,

which is 900 times faster than the state of the art, zk-STARK, for circuits larger than 235

gates. Note that this performance result is tested through Lua script, and native code

for circuit evaluation is 10 times faster in our experiment. �e veri�er’s running time

is merely a signature veri�cation, which takes approximately 1.5 ms – be�er than all

the other existing succinct NIZK systems. �e proof size is 297 Bytes with current Intel

SGX signature, where 256 Bytes are the signature. Hence, we envision it is possible to

further reduce the proof size by replacing the signature scheme. �e TrustZone based

system uses ECDSA on the secp256k1 curve, so the proof size is only 32 Bytes.

Applications. Finally, we discuss applications of our succinct scriptable NIZK. We

note that, many applications have been previously investigated. However, it is very

challenging to deploy them in practice due to the performance barrier.

Sound and scalable blockchain. As discussed at the very beginning of the Introduction,

lots of heated discussions are taking place in blockchain community, with the goal of

improving the performance in a sound manner. �is consists of two parts. First, we

should address the existing issues, since many blockchain scalability proposals have

been implemented even the community is aware of the security concerns. Again, we

note that, these issues were not addressed probably due to the missing of fast and

succinct NIZK.

Second, we will enable new design paradigm for the interesting “one-to-many”

unbalanced computation scenarios. Using our NIZK, typically, a single node as prover,

can generate in very short time a proof that will convince all other nodes to accept

the validity of the current state of the ledger, without requiring those nodes to naively

re-execute the computation, nor to store the entire blockchain’s state, which would be

required for such a naive veri�cation.
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Privacy preserving smart contracts. �e zero-knowledge properties of ZK proofs has

already been intensively used in blockchain projects, with the goal of ensuring the

anonymity and protecting �nancial privacy. Notably, Succinct Non-interactive ARgu-

ments of Knowledge (zk-SNARK) has been used in Zcash and Ethereum; Bulletproofs

has been used in Monaro. Recently, Ethereum has the plan to explore the feasibility

zk-STARK in its future version of their platform. We note that, it is still not clear if zk-

STARK can be widely adopted in blockchain platforms given the fact that, the current

proof size is 1000× longer than zk-SNARKs. Fortunately, our NIZK is super succinct,

and super fast.

2 Preliminaries

Trusted execution environment. Trusted execution environment (TEE) refers to a

range of technologies that can establish an isolated and trusted environment where

security sensitive data can be stored and processed with con�dentiality and integrity

guarantees. TEE needs to be instantiated on top of a trusted computing base (TCB),

which consists of hardware, �rmware and/or so�ware. Minimizing the size (a�ack

surface) of TCB with reasonable assumptions is the common goal of this line of re-

search. In practice, TEE can be realized on top of several promising trusted hardware

technologies, such as ARM TrustZone and Intel SGX. Although recently a few side-

channel a�acks, e.g. [29, 10], have been explored against those TEE candidates, new

designs and �xes are proposed on a monthly basis. Hence, we envision that TEE will

be a cheap and acceptable assumption in the near future. In this work, our benchmarks

are mainly based on the Intel SGX platform for its readily deployed remote a�estation

infrastructure; however, our technique can also be implemented on any other TEE

solutions.

Intel SGX. Intel So�ware Guard Extensions (SGX) is a widely used trusted hardware

solution to enable TEE. It provides a hardware enforced isolated execution environ-

ment against malicious OS kernels and supervisor so�ware. �e SGX processor sets

aside an exclusive physical memory space, called processor reserved memory (PRM)

to ensure the con�dentiality and integrity of enclave’s memory. Each SGX hardware

holds two root keys: root provisioning key and root seal key. �e actual a�estation

keys are deviated from those root keys via PRF. Intel’s (anonymous) a�estation is based

on an anonymous group signature scheme called Intel Enhanced Privacy ID (EPID) [9].

In this work, we are particularly interested in SGX’s ability to enable a�ested computa-

tion, i.e. any third party can audit an outcome is computed by a pre-agreed program in

a genuine SGX. More speci�cally, the application enclave �rst uses EREPORT to gen-

erate a report for local a�estation (identifying two enclaves are running on the same

platform). �e report is then sent to a special enclave called �oting Enclave (QE)

to produce a quote by signing the report with the group signature. In theory, given

the group public key (and the up-to-date revocation list), any veri�er can check the

validity of the signed quote non-interactively; however, currently, one must contact

the Intel A�estation Service (IAS) for veri�cation. IAS will �rst verify the group sig-

nature and then create the corresponding a�estation veri�cation report with its own

signature.
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NIZK proof/argument systems. Let R be a polynomial time decidable binary rela-

tion. We call x the statement andw the witness, if (x,w) ∈ R.L := {x | ∃w : (x,w) ∈
R} is the NP language de�ned by R. In a zero-knowledge (ZK) proof/argument sys-

tem, the prover wants to convince one or more veri�er(s) x ∈ L, where L is an ar-

bitrary NP language. �e ZK system is called non-interactive (NIZK) [7] if the prover

can generate the proof without interacting with a veri�er, and any veri�er(s) can check

the validity of the proof. However, it is not possible to realize a NIZK proof/argument

system unless the language is in BPP in the plain model (a.k.a. standard model) [19].

To circumvent this impossibility result, all NIZK proof/argument systems must rely

on some trusted setup assumptions, such as the common reference string model, ran-

dom oracle model, and generic group model, etc. A NIZK system is called succinct if

the proof size is asymptotically less than |w|+ |x| (cf. Sec. 3). Unfortunately, it is also

shown in [17] that succinct NIZK proof/argument systems cannot be based on any

falsi�able assumptions, i.e. an assumption that can be wri�en as a game. �at means

one must embrace “strong assumptions” to enjoy the bene�t of succinctness. In addi-

tion, many NIZK proof/argument systems have a so-called unbalanced property, where

the veri�er’s complexity is minimized (sometimes maybe at the cost of increasing the

prover’s complexity). �is property is desirable when the number of veri�ers is large,

such as the blockchain scenarios.

3 Security De�nition

In this section, we formally de�ne the scriptable NIZK. Our de�nition is through an

ideal functionality FQ
sNIZK

. In addition, we present a setup functionalityOQ
HW

. We note

that the two functionalities will be realized in section 4 and instantiated in section 5,

respectively.

�e functionality interacts with a set of parties P := {P1, . . . , Pn} and adversary S . It is parameter-

ized with a predicate Q.

Proof: Upon receiving (Prove, sid, ssid, 〈C, Inputpub, Inputpriv,Output〉) from a party Pi ∈ P :

– Assert Q(C, Inputpub, Inputpriv,Output) = 1 and C(Inputpub, Inputpriv) = Output;

– Send (Prove, sid, ssid, 〈Pi, C, Inputpub,Output〉) to S ;

– Upon receiving (Prove, sid, ssid, π) from S , record tuple (C, Inputpub,Output, π) and return

(Prove, sid, ssid, 〈C, Inputpub,Output, π〉) to Pi .

Veri�cation: Upon receiving (Verify, sid, ssid, 〈C, Inputpub,Output, π〉) from a party Pj ∈ P :

– If tuple (C, Inputpub,Output, π) is not recorded, send (Verify, sid, ssid, 〈Pj , C,
Inputpub,Output, π〉) to S ;

– Upon receiving (Verify, sid, ssid, Inputpriv) from S :

• Assert Q(C, Inputpub, Inputpriv,Output) = 1 and C(Inputpub, Inputpriv) = Output;

• Record the tuple (C, Inputpub,Output, π);

– If a tuple (C, Inputpub,Output, π) has been recorded, return (Verify, sid, ssid, 1); else, return

(Verify, sid, ssid, 0).

Functionality FQ
sNIZK

Fig. 1: �e scriptable functionality FQ
sNIZK

.
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Scriptable NIZK ideal functionality. �e scriptable NIZK ideal functionality

FQ
sNIZK

is depicted in Fig. 1. �e functionality is parameterized by a predicate Q.

Given a script C, a public input Inputpub, a private input Inputpriv, and an out-

put Output, the functionality FQ
sNIZK

allows the prover to obtain a proof π if

Q(C, Inputpub, Inputpriv,Output) = 1 and C(Inputpub, Inputpriv) = Output. Once

a proof π is generated, it will always is veri�ed. Notice that the proof π is generated

without the knowledge of the private input Inputpriv; therefore, the proof generated

by FQ
sNIZK

has the conventional zero-knowledge. Since FQ
sNIZK

must obtain a private

input Inputpriv such that C(Inputpub, Inputpriv) = Output before recording a proof

π. Hence, FQ
sNIZK

also capture the (knowledge) soundness property. In addition, the

scriptable property is re�ected by the predicate Q, which restricts the class of func-

tions that FQ
sNIZK

supports. For instance, Q could be the total execution steps is less

than a certain bound.

�e functionality FQ
sNIZK

interacts with a set of players P := {P1, . . . , Pn} as well

as ideal adversary S . To generate a proof π, the prover needs to submit the command

〈C, Inputpub, Inputpriv,Output〉 to FQ
sNIZK

. A�er checking the validity, FQ
sNIZK

will in-

form the adversary S using command (Prove, sid, ssid, Pi, C, Inputpub,Output). If the

adversary S allows, she will then send the proof π to FQ
sNIZK

. FQ
sNIZK

records the mes-

sage (C, Inputpub,Output, π) and returns it to the requestor. To verify a proof π, the

functionalityFQ
sNIZK

�rst checks if the tuple (C, Inputpub,Output, π) is recorded. If not,

which means the proof is not generated by the functionality itself, thenFQ
sNIZK

asks the

adversary S for the private input. Once a private input Inputpriv is submi�ed, FQ
sNIZK

checks Q(C, Inputpub, Inputpriv,Output) = 1 and C(Inputpub, Inputpriv) = Output.

If it is the case, FQ
sNIZK

records the tuple (C, Inputpub,Output, π), and the proof is ac-

cepted.

Remark on succinctness. We say a NIZK proof system is succinct if the size of the proof

|π| = poly(λ)(|x|+ |w|)o(1).

�e functionality interacts with a set of parties P := {P1, . . . , Pn} and adversary S . It is parameter-

ized with a predicate Q and a digital signature scheme DS := (KeyGen, Sign,Verify).

– Upon receiving (Init, sid) for the �rst time from any party Pi ∈ P :

• Generate (PK, SK)← DS.KeyGen(1λ);

• Record (sid,PK, SK);

– Upon receiving (GetPK, sid) from a party Pi ∈ P :

• If (sid,PK, ·) is recorded, return (GetPK, sid,PK) to the requestor Pi .
– Upon receiving (Compute, sid, ssid, 〈C, Inputpub, Inputpriv〉) from a party Pi ∈ P for some

ssid, if (sid, ·, SK) is recorded, send (Compute, sid, ssid, 〈Pi, C, Inputpub〉) to the adversary S ;

Once receiving (Proceed, sid, ssid) from S , do:

• Execute y ← C(Inputpub, Inputpriv);

• Assert Q(C, Inputpub, Inputpriv, y) = 1;

• Sign σ ← DS.Sign(SK, 〈ssid, C, Inputpub, y〉);

• Return (Compute, sid, ssid, 〈y, σ〉) to the requestor Pi .

Functionality OQ
HW

Fig. 2: �e Q-compliant trusted hardware functionality OQ
HW

.
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Q-compliant trusted hardware model. Our scheme is built in the Q-compliant

trusted hardware model (Q-HW model), where Q is a predicate that speci�es the class

of functions that the hardware is allowed to compute. In the Q-HW model, all par-

ties have access to an ideal functionality OQ
HW

, which on input queries, executes a

given Q-compliant function and returns the execution results. �e predicate Q de-

pends on the setup, which may vary from protocol to protocol. In this work, we ab-

stract our requirement as the functionality OQ
HW

(cf. Fig. 2, below). �e OQ
HW

func-

tionality is parameterized with a predicate Q and a digital signature scheme, de-

noted DS := (KeyGen,Sign,Verify). OQ
HW

can be initialized once by sending the

(Init, sid) command to it. It then generates (PK,SK) ← DS.KeyGen(1λ) and record

(sid,PK,SK). A�er initialization, anyone can query the public key PK using the

GetPK command. Anyone can then send (Compute, sid, ssid, C, Inputpub, Inputpriv)
request to the functionalityOQ

HW
, where C is the polynomial-time algorithm, Inputpub

is the public input, and Inputpriv is the private input. �e functionality �rst computes

C(Inputpub, Inputpriv) = y and then asserts Q(C, Inputpub, Inputpriv, y) = 1; it then

returns (y, σ), where the signature σ ← DS.Sign(SK, 〈ssid, C, Inputpub, y〉). Note that

the private input is not signed.

4 Our Succinct Scriptable NIZK Construction

In this section, we present our succinct scriptable NIZK construction in the OHW-

hybrid world. Before presenting our intuition and construction, we �rst set up the

context for succinct scriptable NIZK.

Common information. Unlike most existing NIZK proof systems, the script C (or

language L to be proven) is not hardcoded in the prover and veri�er executable �les.

Our script NIZK proof system allows the users to con�gure the language instance. �is

implicitly assumes that the prover and the veri�er(s) have some common information

in addition to the statement x before the protocol execution. For instance, they all

know the description of the NP language L, which is usually represented by its poly-

nomially decidable binary relationR. Without loss of generality, for a relationR, we

assume there exists an e�ciently computable algorithm CR such that CR(x,w) = 1 if

(x,w) ∈ R and otherwise CR(x,w) = 0. CR is the common public input to both the

prover and the veri�er. Depending on the concrete implementation, di�erent NIZK

proof systems use di�erent CR representation; most popular NIZK proof systems use

arithmetic circuit representation, while some, e.g. [5], allows more developer-friendly

representations, e.g., in C programming language. Although, in principle, one can con-

vert any RAM model program into a circuit representation, this transform imposes

O(log n) overhead.

Intuition. Trusted hardware o�ers two important features: (i) data con�dentiality and

(ii) computation integrity. Most existing trusted hardware (TEE) based applications,

e.g., [15] mainly explore the data con�dentiality aspect; whereas, in this project, we

emphasize the computation integrity aspect. Recall that in a NIZK proof, the prover

and the veri�er have common input (CR, Inputpub := x). �e potentially malicious

prover wants to convince the veri�ers that he/she knows a witness Inputpriv := w
such that CR(Inputpub, Inputpriv) = 1. Since the trusted hardware can guarantee
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computation integrity even when the host is malicious, we can let OQ
HW

to execute

the relationship decision algorithm b ← CR(x,w) and sign the output b. To bind

the decision algorithm and statement, we let OQ
HW

signs (CR, x, b) without revealing

the witness w. �erefore, by checking the signature, the veri�er is convinced that the

prover must know a witness w such that CR(x,w) = 1 if (CR, x, 1) is signed byOQ
HW

.

Similarly, for general computation, the private input Inputpriv is not signed; therefore,

zero-knowledge property is preserved even if the signature leaks the signed message.

What is the di�erence between the above NIZK construction and trusted computa-

tion in the OQ
HW

functionality se�ing? Recall that NIZK proofs are typically deployed

in a one-to-many scenario, so the prover only needs to invoke theOQ
HW

once and many

veri�ers can check the validity of the proof; on the contrary, the other existing TEE

based trusted computation applications mostly focus on one-to-one se�ing. Our crs is

just the public key of OQ
HW

.

Construction. Our Succinct Scriptable NIZK construction utilizes the Q-compliant

hardware functionality OQ
HW

as de�ned in Fig. 2.

Proof: Upon receiving (Prove, sid, ssid, 〈C, Inputpub, Inputpriv,Output〉) from the environment Z ,

Pi ∈ P does:

– If the functionality OQ
HW

is not initialized yet, send (Init, sid) to OQ
HW

;

– Assert Q(C, Inputpub, Inputpriv,Output) = 1 and C(Inputpub, Inputpriv) = Output;

– Send query (Compute, sid, ssid, C, Inputpub, Inputpriv) to OQ
HW

and obtain

(Compute, sid, ssid, 〈Output, σ〉) from OQ
HW

;

– Output (ProveReturn, sid, ssid, σ) to the environment Z .

Veri�cation: Upon receiving (Verify, sid, ssid, 〈C, Inputpub,Output, π〉) from the environment Z ,

Pj ∈ P does:

– �ery (GetPK, sid) to OQ
HW

, obtaining (GetPK, sid,PK);
– Parse π as σ;

– Compute b← DS.Verify(PK, 〈ssid, C, Inputpub,Output〉, σ);

– Output (VerifyReturn, sid, ssid, b) to the environment Z .

Succinct scriptable NIZK protocol ΠQ
nizk

Fig. 3: �e succinct scriptable NIZK protocol ΠQ
nizk

in the OQ
HW

-hybrid model.

We aim to achieve constant veri�cation time; light-weight device can perform the

veri�cation. In addition, the veri�er is only required to query the OQ
HW

functionality

once to obtain the public key PK; when PK has already been fetched, the veri�ca-

tion can be executed o�ine. As depicted in Fig. 3, our succinct scriptable NIZK proof

protocol ΠQ
nizk

uses a digital signature scheme DS := (KeyGen,Sign,Verify) as its

building block. At the beginning of the protocol, the hardware functionality needs

to be initialized. In Fig. 3, this step is performed by the prover (marked in grey) if it

is not done yet. �e prover then asserts Q(C, Inputpub, Inputpriv,Output) = 1 and

C(Inputpub, Inputpriv) = Output; it sends (Compute, sid, ssid, C, Inputpub, Inputpriv)
to OQ

HW
and obtains (Compute, sid, ssid, 〈Output, σ〉) from OQ

HW
. σ is the proof.

To verify a proof π, the veri�er needs to know the public key PK.

�is step can be performed by a trusted setup, and PK is published as the

common reference string. Otherwise, the veri�er can query OQ
HW

to fetch it
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(marked in grey). In the veri�cation phase, the veri�er V accepts the proof if

DS.Verify(PK, 〈ssid, C, Inputpub,Output〉, σ) = 1.

Security. We show the security of our succinct scriptable NIZK construction via

�m. 1, below. Its proof can be found in the full version.

�eorem 1. Assume signature scheme DS := (KeyGen,Sign,Verify) is EUF-CMA se-

cure. �e scriptable NIZK protocolΠQ
nizk

described in Fig. 3, UC-realizes the FQ
sNIZK

func-

tionality depicted in Fig. 1 in the OQ
HW

-hybrid world.

5 OQ
HW

Instantiations

In this section, we realize the Q-compliant trusted hardware functionality OQ
HW

via

Intel SGX and Arm TrustZone.

Challenges. In both platforms, there are a number of challenges need to be resolved.

In terms of SGX, the remote a�estation of Intel SGX currently requires the veri�er to

contact the Intel IAS server. On the other hand, in a typical NIZK proof system usage

case, the prover aims to prove the truth of the statement to a great number of veri-

�ers. If each veri�er needs to query the Intel IAS server to check the proof, the overall

performance is limited by Intel’s throughput. Moreover, the validity of a NIZK proof

should be consistent over time, i.e., if a NIZK proof is veri�able at this moment, the

same proof should remain veri�able in the future. Unfortunately, this would not be

the case if we invoke the Intel IAS in the veri�cation process; certifying an old quote

(say, generated 1 year ago) is never the design goal of Intel’s remote a�estation. �is

is because the quote needs to contain an non-revoked proof for each item on the sig-

nature revocation list, and the proof is no longer veri�able once the revocation list is

updated at the Intel side. �at means a quote is only valid until the next revocation list

update. To resolve this issue, in our design, a�er generating the quote, the prover im-

mediately queries the Intel IAS server for the a�estation veri�cation report on behave

of a veri�er. Since the a�estation veri�cation report is signed by Intel, given Intel’s

public key, anyone can verify the validity of the a�ached signature. �is tweak also

makes the veri�cation process non-interactive.

Secondly, the existing SGX-based proof system, e.g., [40], requires the prover and

the veri�ers agree on the executable binary (enclave) for the language to be proven.

It would make it impossible to build a universal NIZK system in practice. Note that

SGX only signs the measure of the enclave, which cannot be directly compared with

the corresponding algorithm. Imaging a veri�er who is checking a NIZK proof gener-

ated some time ago, how would the veri�er know the executable binary (enclave) is

faithfully compiled? �erefore, NIZK systems, like [40], would need a trusted party to

generate an executable binary (enclave) for a given problem instance, and the binary

is served as the concrete CRS for the given instance.

In terms of TrustZone, unlike the ecosystem of SGX that is controlled by Intel, the

fragmentation of the ARM TrustZone ecosystem may make it hard to have a unique

setup standard. To resolve this issue, we need to introduce a trusted setup authority

to serve as an a�estation server.
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SGX-based system overview. In our system, the protocol Πsgx involves three en-

tities: the (trusted) Intel server, denoted as IS, the prover P, and the SGX hard-

ware, denoted as HWsgx. In practice, it is still a challenge for a third party to ver-

ify the consistency between an executable binary and its so�ware speci�cation.

VerifySign(C, Inputpub, tag) :

– (OCALL) Load Inputpriv ;

– Execute script y ← C(Inputpub, Inputpriv);

– Set ReportData = (tag, hash(C, Inputpub, y));

– (EREPORT) Create report r for QE to sign;

– Return (y, r);

Enclave SE

Fig. 4: �e script engine enclave SE .

�at is, the binary contains no bug, no

trapdoor, and it is not subverted. Even it

is possible, it dramatically increases the

veri�er’s complexity. On the other hand,

it is implausible to assume a trusted third

party that is available to generate a cer-

ti�ed binary for each problem instance.

To address this issue, we decide to adopt

a scripting language, called Lua. Lua is

a lightweight script language, which is

ideal for the SGX enclave computation

environment. We let a trusted party, i.e., the (trusted) Intel server IS, to produce a

Lua script engine enclave SE . IS then signs SE so that no one can tamper with its

functionality. As depicted in Fig. 4, SE has one main function called VerifySign4
. It

takes three arguments: (i) a script C, (ii) a public input Inputpub (iii) a tag, tag, that

can be used to specify the proof context, such as ssid, etc. �e VerifySign function

�rst loads the private input Inputpriv from the prover; it then executes the script

y ← C(Inputpub, Inputpriv) using the script interpreter. Abort if y = ⊥, which means

the execution error happened; that is considered as Q(C, Inputpub, Inputpriv, y) = 0.

Otherwise, it sets h := hash(C, Inputpub, y) and ReportData := (tag, h); it then in-

vokes EREPORT to create a report r for QE to sign. Finally, it returns (y, r).

Remark. Technically, the private input Inputpriv can be input to the VerifySign func-

tion together with the script C and the public input Inputpub as another argument.

We choose to load Inputpriv separately during the enclave execution for the sake of

uniformity: (i) for some applications, we could choose to hard code C and Inputpub for

e�ciency; and (ii) in case that the prover needs to use an SGX enabled server from

a third party, it is possible to load Inputpriv in to the enclave via secure channels to

ensure privacy.

�e hardware functionality OQ
HW

is instantiated by the protocol ΠQ
sgx

shown in

Fig. 5. �e Init functionality is realized by the Intel server IS and the hardware HWsgx.

Upon receiving (Init, sid), IS invokes the EPID provisioning key procedure [26] with

HWsgx. �e root seal key of HWsgx was generated during the processor manufactur-

ing, and Intel claims that they are oblivious to it; the root provisioning key is set up by

a special purpose o�ine key generation facility. �e actual procedure is complicated;

HWsgx is registered to the Intel server IS via a blind joining protocol. We refer inter-

ested reader to [26] for details. Hereby, we simplify the description – at the end, HWsgx

stores a group signature secret key GSK, and the Intel server IS stores the correspond-

ing group signature public key GPK that allows it to verify the signatures generated

4

�e enclave also has a GetQEInfo function to receive the target information of QE. It is omit-

ted for simplicity.
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Init: Upon receiving (Init, sid), the Intel server IS interacts with HWsgx invoking the EPID provision-

ing key procedure (Cf. [26]); At the end of the protocol:

– �e Intel server IS stores GPK;

– HWsgx stores GSK;

�e Intel server IS also does:

– Generate (P̃K, S̃K)← DS.KeyGen(1λ);

– Create the script engine enclave SE as depicted in Fig. 4;

– Sign σ̃ ← DS.Sign(S̃K,SE);

GetPK: Upon receiving (GetPK, sid), the Intel server IS sets PK∗ := (P̃K,SE, σ̃) and return

(GetPK, sid,PK∗);

Prove: Upon receiving (Compute, sid, ssid, 〈C, Inputpub, Inputpriv〉):

– �e prover Pi creates an enclave instance of SE to HWsgx ;

– �e prover Pi invokes VerifySign(C, Inputpub, tag := (sid, ssid));

(Supply Inputpriv during the execution);

– HWsgx runs y ← C(Inputpub, Inputpriv) and aborts if y = ⊥ (i.e.

Q(C, Inputpub, Inputpriv, y) = 0);

Otherwise, it outputs a quote q(C, Inputpub, y, tag);

– �e prover Pi sends the quote q(C, Inputpub, y, tag) to the Intel server IS to verify.

– �e Intel server IS checks the validity of the quote; it then signs and returns

σ ← DS.Sign(SK, 〈C, Inputpub, y, tag〉);

– �e prover Pi outputs (y, σ);

Protocol ΠQ
sgx

Fig. 5: Protocol ΠQ
sgx

realizing OQ
HW

via Intel SGX.

by HWsgx. Note that the group signature is only used to authenticate HWsgx to the

Intel, rather than to the public. �erefore, it is possible to replace the group signature

scheme with some symmetric key cryptographic primitive, e.g., MAC. In addition, IS

also generates (P̃K, S̃K)← DS.KeyGen(1λ). It then creates the script engine enclave

SE as depicted in Fig. 4 and signs it σ̃ ← DS.Sign(S̃K,SE). �e public key is de-

�ned as PK∗ := (P̃K,SE , σ̃). Anyone can query (GetPK, sid) to the Intel server IS to

fetch the public key PK∗. �e Compute command is realized by all three parties. Upon

receiving (Compute, sid, ssid, 〈C, Inputpub, Inputpriv〉), the prover Pi creates an en-

clave instance of SE to HWsgx; it then invokes VerifySign(C, Inputpub, tag) (supplying

Inputpriv during the execution).HWsgx executes the script y ← C(Inputpub, Inputpriv);
Abort, if y = ⊥, which is considered as Q(C, Inputpub, Inputpriv, y) = 0. Oth-

erwise, it outputs a report r(C, Inputpub, y, tag) for local a�estation. �e prover

Pi sends the report r(C, Inputpub, y, tag) to the QE of HWsgx to produce a quote

q(C(Inputpub, Inputpriv)); the prover Pi sends the quote q(C, Inputpub, y, tag) to the

Intel server IS to verify. �e above steps are simpli�ed in Fig. 5. �e Intel server

IS checks the validity of the quote, i.e., checking the group signature and that the

SGX platform generating the quote is not revoked; it then signs and returns σ ←
DS.Sign(SK, 〈C, Inputpub, y, tag〉); �e prover Pi outputs (b, σ); Fig. 6 summaries the

basic �ow for the Init, GetPK, and Compute protocols.

TrustZone-based system overview. ARM TrustZone is another popular trusted

hardware platform that can also be leveraged (as long as a device-unique, asymmetric

key pair signed by the device’s vendor exists). ARM TrustZone provides isolated exe-
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Verify(C,InPub,tag):
    (OCALL) Load InPriv;
    Execute script y:= C(InPub,InPriv);
    Compute h := Hash(C,InPub,y);
    Set ReportData := (tag,h);
    (EREPORT) Create report r;
    Return (y, r);

PK* PK

Init Intel
2. GetPK

1. 
Provis

ionin
g 

Prover
Prove

3. Create and run Enclave 

    VerifySign(R,x,tag)

5. Generate quote4. Return report

6. Verify quote and get sig

7. Generate proof Proof

SGX

QE

SE

SE

Sig

PE

GetPK

Fig. 6: SGX based trusted hardware instantiation

cution by separating the CPU into two di�erent worlds, i.e., normal world and secure

world. �e code running inside the normal world cannot directly access the resource

inside the secure world. Also only the application inside the secure world can access

the protected resource.

Speci�cally, the device-unique key pair can be used to sign the a�ention blob that

indicates the a�estation data originates from the secure world. �e a�estation data in

this case contains 〈C, Inputpub, y, tag〉. �e signed data will be passed to the a�estation

server of device vendor (like Intel IAS). If the signature veri�cation passes on the device

vendor’s a�estation server, the prover generates proof.

�e Lua script engine design and system architecture is similar to the SGX-based

solution. However, it is more e�cient, as the a�estation data can be veri�ed without

interacting with the the a�estation server if the veri�er already fetched the public key

PK from it.

6 Implementation and Evaluations

Our SGX-based prototype is implemented in C++ using the Intel(R) SGX SDK v2.5 for

Linux. Our implementation is built on top of [36], and we added OpenSSL lib functions

for common cryptographic primitives, such as SHA256, ECDSA, etc. Since system call

is not allowed in enclave, we also simulated a simple �le system to support the Lua

interpreter. �e size of the compiled enclave binary is approximately 3.2 MB. In ap-

pendix A, we will present more detail on our SGX-based prototype.

Our TrustZone-based prototype is developed on the Hikey 960 development board,

which is powered by Huawei Kirin 960 SoC with 4 ARM Cortex-A73 cores and 4

1.8GHz ARM Cortex-A53 cores. �ere are 4GB DDR4 memory and 32GB UFS �ash on

our board. In our experiment, we choose OPTEE (v3.6) as the OS in the secure world,

which is open source and well maintained. For the normal world OS, we use a Linux

distribution, which is developed by Linaro Security Working Group based on Linux

kernel v5.1 and able to corporate with OPTEE. �en, we implement a Trusted App

(TA) for the secure world, which will be managed by OPTEE. �e Client Application

(CA) in the normal world can invoke the TA through speci�c interface. Lua Intrepreter
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(v5.3.2) is adopted and modi�ed. �e default secure memory size supported by OPTEE

is 16 MB, which restricts the script size. A signing key is stored in the TrustZone for

the experiment. �e enclave structure and system design is similar to the SGX-based

solution, except we adopt ECDSA signature over the secp256k1 curve. �erefore,

the signature/proof size is only 32 Bytes.
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Fig. 7: Performance comparison of di�erent

succinct NIZKs.

Fig. 7a,7b,7c shows the performance

comparison of di�erent succinct NIZK

proof systems w.r.t. prover’s running

time, veri�er’s running time, and proof

size, respectively. �e complexity is

measured by the number of multiplica-

tion gates. Our work and BCCGP are

128bit security; libSNARK and SCI are

80-bit security; Ligero and zk-STARK are

60-bit security. Our system is tested on

a SGX-equipped processor (i7-8700 @

3.2GHz and 16GB RAM, single thread)

and Hikey 960 TrustZone development

board. All the other systems were tested

on a server with 32 AMD cores @

3.2GHz and 512GB RAM, and the data

was reported by [3]. For libSNARK,

the hollow marks (libSNARK*) in ver-

i�er time and proof size measure only

count the post processing phase; while

solid marks also count CRS generation

time. For our SGX based scheme, the

prover’s running time includes network

time for Intel IAS veri�cation; SGX-A

(TZ-A) stands for arithmetic circuit over

ring Z264 , and SGX-B (TZ-B) stands for

Boolean circuit (NAND gates) w.r.t. SGX

and TrustZone platforms.

Although our NIZK proof system

support RAM model computer program,

we implemented circuit evaluation as

Lua script to facilitate comparison. We

emphasize that the reported time is

tested using Lua scripts. If the circuit

is wri�en in native C, the performance

is approximate 10 times be�er on both

SGX and TrustZone platforms. �e com-

plexity is measured by the number of

multiplication gates. We provide ‘SGX-

A’ and ‘TZ-A’ as the benchmark for
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arithmetic circuit over ring Z264 for SGX and TrustZone, respectively; ‘SGX-B’ and

‘TZ-B’ as the benchmark for Boolean circuit, using SIMD to implement NAND gates.

�e measure of the enclave is assumed to be pre-computed and announce by Intel, so

it is not counted into the veri�er’s running time; moreover, the problem instance con-

sists of the Lua script and its hash; otherwise, the veri�er can also compute the hash

at a small cost. As shown in [14], SHA256 can be performed at 2.1-3.5GB/s on most

platforms.

7 Related work

Universal NIZK. Now we brie�y describe several di�erent practical approaches for

universal NIZK (i.e., can be applied to general computations and languages in NP).

We note that our description here are based on a large body of existing results, and

unfortunately we cannot cover the entire body research in this line. We mainly com-

pare the performance related properties, including prover scalability, veri�er scala-

bility, setup/initialization scalability, and communication scalability. Additionally, we

also compare the underlying setup assumptions and computational assumptions. We

note that, in the existing approaches, each setup only support one language instance.

Meanwhile, our scriptable NIZK can support multiple language instances in a single

setup.

�ere are multiple approaches to scalable NIZK. �e �rst approach is based on ho-

momorphic public-key cryptography, by Ishai et al. [24] and Groth [21]. �en Gennaro

et. al [16] introduced an extremely e�cient instantiation, based on �adratic Span

Programs, which later been implemented in Pinocchio [35]; see also [5, 6, 12, 27]. Note

that, this technique has been used in Zcash. We note that, the homomorphic public-key

cryptography based approach can be combined with other techniques to improve the

performance. For example, Valiant, [42] suggested to reduce prover space consump-

tion via knowledge extraction assumptions; �is combined method can inherit most

of the properties from the underlying proof system. We note that our scriptable NIZK

system is more e�cient.

�e second approach is based on the hardness of the DLP, originally proposed by

Groth [22] and then implemented in [11, 8]. [11] Note that, the communication com-

plexity in the DLP approach is logarithmic. However, the veri�er complexity in this

approach is not scalable. �e third approach is based on e�cient Interactive Proofs

(IP) [20, 37]. �e line of realizations can be found in [44] and [43]. Note that, the ver-

i�er in this approach is not scalable. �e fourth approach is via the so-called “MPC in

the head”, originally suggested by Ishai et al. [25] and then implemented in ZKBoo

[18], and in Ligero [1]. “MPC in the head” based systems have a non-scalable veri-

�er; in addition, communication complexity is non-scalable. A recent proposal called

STARK [4], a�empts to simultaneously minimize proof size and veri�er computation.

However, their proof sizes are not small.

In [30, 23], an updatable and universal reference string is used. �e main goals of

this approach is to address risks surrounding setups and many other security chal-

lenges in practice. It does not improve the e�ciency. Another method to achieve uni-

versal setup is using universal circuit [41, 28]. In [6, 5], a TinyRAM architecture is

used to describe universal computations as simple programs. A universal circuit is

16



built based on a speci�c universal language (i.e., a set of tuples, where each tuple con-

sists of a TinyRAM program, an input string, and a time-bound to run the program).

Unfortunately, this approach incur a large overhead on the prover computation.

Trusted hardware. Many previous works have proposed using trusted hardware to

build cryptographic algorithms and systems, including protection of cryptographic

keys [31], functional encryption [15], digital rights management [39], map-reduce

jobs [32, 13], machine learning [33], data analytics [38], and protecting unmodi�ed

Windows applications [2].

8 Conclusion

In this work, we introduce a new notion called succinct script NIZK proof system. We

formally model this notion in the UC framework. We then propose a generic scriptable

NIZK solution based on trusted hardware. We also instantiated our scheme in both

Intel SGX and Arm TrustZone. To the best of our knowledge, the proposed succinct

scriptable NIZK is be�er than all the existing succinct NIZK proof systems w.r.t. the

prover running time (1000 times faster for Lua script, 10000 times faster for Native

C), the veri�er’s running time (10 times faster), and the proof size (10 times smaller).

Most importantly, our NIZK proof system can be readily deployed and used by any

developers without the need of cryptographic background.
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A SGX implementation

As we mentioned in Section 6, our SGX-based prototype is implemented in C++ using

the Intel(R) SGX SDK v2.5 for Linux. Our implementation is built on top of [36], and we

added OpenSSL lib functions for common cryptographic primitives, such as SHA256,

ECDSA, etc. Since system call is not allowed in enclave, we also simulated a simple

�le system to support the Lua interpreter. �e size of the compiled enclave binary is

approximately 3.2 MB.

Up on execution, the prover �rst creates an instance of the Lua script engine en-

clave in the SGX and transfers the target information of QE into the Lua script en-

gine enclave, which will be used later to generate the report for QE. �e prover then

produces his proof by calling speci�c function interface of the enclave, VerifySign,

taking the script C and the public input Inputpub as the arguments of the function.

In our prototype, the script C and statement Inputpub are pre-loaded into the sim-

ulated �lesystem. A�er loading Inputpriv from the prover and pu�ing it into the

simulated �lesystem, the enclave invokes the Lua interpreter to process the script

y ← C(Inputpub, Inputpriv), where the script can access the statement and witness

through Lua �le operations. Note that Lua heap size need to be prede�ned while com-

piling the Lua script engine enclave, such as 32 MB, which restrict the class of script

it can support.

A�er the script execution, the enclave hashes h := hash(C, Inputpub, Inputpriv)
and then put (tag, h) in to the REPORTDATA �eld of the report structure, and gener-

ate the report r(tag, h) for QE to sign. �e prover will then fetch the report r(tag, h)
and send it together with signature revocation list (which can be obtained from the

Intel IAS and SPID (which is assigned by the Intel IAS when user registers to the In-

tel IAS) to the QE. �e QE will verify the report using its report key and compute an

non-revoked proof for the signature revocation list, generating a quote consisting of

the ReportBody �eld of the report, the non-revoke proof and some other necessary

information. �e prover then will send the quote to the Intel IAS server for a�estation

veri�cation report.

Reducing proof size. Naively, the prover can send the entire signed a�estation veri�-

cation report as the NIZK proof. �e proof size is 731 Bytes (IAS report size) + 256

Bytes (the signature size). To reduce proof size, we observe that Intel’s signature is

signed on top of the hash of the a�estation veri�cation report, so the prover does

not need to give the entire report as a part of the proof as far as the veri�er can re-

produce the hash of the report. However, the veri�er is interested in some �eld of in

the isvEnclaveQuoteBody, such as REPORTDATA. Notice that SHA256 uses Merkle-

Damgård structure, i.e., the �nal hash digest is calculated by iteratively calling a com-

pression function over trunks of the signing document. �erefore, the prover can give

the partial hash digest of the �rst part of the signing report, including ID, timestamp,
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Table 2: �oteBody Structure

uint16 t version;

uint16 t sign type;

sgx epid id t epid group id;

sgx isv svn t qe svn;

sgx isv svn t pce svn;

uint32 t xeid;

sgx basename t basename;

sgx cpu svn t cpu svn;

sgx mise select t misc select;

uint8 t reserved1[28];

sgx a�ributes t a�ributes;

sgx measurement t mr enclave;

uint8 t reserved2[32];

sgx measurement t mr signer;

uint8 t reserved3[96];

sgx prod id t isv prod id;

sgx isv svn t isv svn;

uint8 t reserved4[60];

sgx report data t report data;

version, isvEnclaveQuoteStatus. �e isvEnclaveQuoteBody structure is shown in Ta-

ble 2. �e veri�er is only interested in the �ve �elds marked in grey background,

and they can be reconstructed from the public input of the veri�er. Moreover, cur-

rently, all the reserved �elds must be 0. Moreover, the veri�er also wants to check

isvEnclaveQuoteStatus = OK; nevertheless, we observe that the a�estation veri�ca-

tion report whose isvEnclaveQuoteStatus = OK has a �xed length n. Otherwise, the

length of the a�estation veri�cation report is di�erent from n. Based on that observa-

tion, we can regard the length n as another public input of the veri�er. �en when the

veri�er receives a proof, he/she can check whether the isvEnclaveQuoteStatus �eld

of the associated a�estation veri�cation report is OK by pu�ing the length n into the

end of the report as the total hashed length. then if the isvEnclaveQuoteStatus �eld is

not OK, the report hash is not aligned probably, resulting a wrong hash digest.

We let the prover give the partial hash digest until misc select �eld. Denote the

partial hash digest of the report as ph. �e prover needs to provide the attributes �eld,

denoted as attr, which is 16 Bytes
5
. �e proof is (ph, attr, σ). �e veri�er can use

reconstruct the hash of the report and then check the validity of the signature. �e

proof size is now reduced to 41 Bytes + 256 Bytes ( the signature size), which is 297

Bytes.

5

In fact, there are 56 bits reserved area, whose default value is 0 in the a�ributes �eld. Hence,

the size can be further reduced by 56 bits.
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