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AdCapsule: Practical Confinement of
Advertisements in Android Applications

Xiaonan Zhu, Jinku Li, Yajin Zhou, and Jianfeng Ma

Abstract—Nowadays, app developers tend to integrate advertisement libraries (or ad libraries) into their apps to get revenue from ad
networks. However, researches have shown that both ad libraries and ad contents could raise serious security and privacy concerns.
In this paper, we propose , a user-level solution to practically confine advertisements, including ad libraries and ad
contents. Our solution does not need to change the Android framework, nor requires the root privilege, thus can be readily deployed.
Specifically, we propose the , which isolates the permissions used by ad libraries from the host app, and the

, which separates the file operations of advertisements. The ad library and ad content cannot read or write any file
outside this sandbox. We have implemented a prototype of . Our evaluation results indicate that can
successfully enforce security policies to block attempts of accessing private information or manipulating files of the host app, and the
performance overhead introduced by is low.

Index Terms—Security and privacy protection, ad library, permission sandbox, file sandbox
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1 INTRODUCTION

IT is no doubt that smartphones have become an essential
part of our life. One potential reason of such popularity is

that there are millions of applications (or apps) available to
users. For instance, 2, 600, 000 apps are available in Google
Play Store [1]. Among these apps, more than 90% are free
ones [2]. Users download and use these apps without pay-
ing app developers.

To compensate for their work, app developers have
incentives to integrate one or more advertisement (or ad)
libraries in their apps (or host apps), and get paid. To
facilitate the integration, ad service providers offer SDKs or
libraries to app developers. App developers integrate these
libraries with minor efforts, sometimes adding only a small
amount lines of code. After that, ad libraries communicate
with the ad network, retrieve and render ad contents.

Unfortunately, previous researches [3–12] have shown
that both ad libraries and ad contents could raise serious
security and privacy concerns to app developers and app
users. First, as ad libraries run in the context of the host
app, there is no clear security boundary between ad libraries
and the host app. Ad libraries inherit all the permissions of
the host app. As a result, ad libraries can probe and abuse
permissions of the host app and behave aggressively [3, 7].
In addition, ad libraries and ad contents have incentives to
read users’ private information, to track and target users
for advertisements [13, 14]. Second, besides permissions,
ad libraries and ad contents can operate on any private
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file of the host app, and directly get or indirectly infer
users’ personal information. Previous studies revealed that
malicious ads could read sensitive information [6, 8], e.g.,
geographical location and chat logs, by accessing files of
the host app. What’s worse, ad libraries may have vulnera-
bilities which could be exploited by attackers to attack the
host apps and users [4, 15, 16]. For instance, the PontiFlex
ad library was reported vulnerable that could be exploited
for arbitrary command execution [4]. We will give examples
of aggressive and vulnerable ad libraries that stimulate our
work in Section 3.

One potential way to address this problem is that app
developers could carefully vet ad libraries before integrating
them. However, this is not a practical solution, due to the
following reasons. First, these libraries (and the ad contents)
are usually obfuscated and not easy to be statically ana-
lyzed. Most app developers do not have time and technical
skills to analyze these libraries. Second, ad libraries could
bypass the static vetting process by using dynamic code
execution technique [7] and executing aggressive payloads
at runtime.

Accordingly, researchers have proposed several solu-
tions [17–19] to solve the security and privacy concerns of ad
libraries. AdDroid [18] and AdSplit [19] are two representa-
tive ones. AdDroid is a privilege-separated ad framework
for the Android platform. It introduces new APIs for ad
libraries and corresponding permissions in Android plat-
form. By doing so, the privileged operations of ad libraries
are implemented in a system service and totally separated
from the host app. To adopt the system, ad libraries, apps
using ad libraries and the underlying Android framework
need to be changed. AdSplit, on the other side, isolates
ad libraries into another process with different user iden-
tification. Ad libraries and the host app are two different
apps, hence it could leverage the Android application UID
mechanism to isolate them from each other. AFrame [20]
further isolates not only process/permission, but also the
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inputs and display. These systems may solve the problem.
However, one serious limitation, i.e., the modification to
the Android framework, obstructs practical deployment of
these systems. Users have to flash custom ROMs to adopt
these systems, which is nearly impossible for normal users.
Even in the case that phone vendors want to integrate
these systems, the well-known Android fragmentation [21]
problem makes the deployment to different phone models
and Android versions a time-consuming process.

In contrast, PEDAL [22] leverages bytecode rewriting
technique to rewrite ad libraries and apply security policies
for the privacy-concerned APIs. It does not need any change
to the ad library or the underlying Android framework,
thus is easy to be deployed. However, this system is not a
complete solution, and could be bypassed due to its design.
First, static code rewriting could be bypassed by ad libraries
using dynamic code execution technique, or through the
exported JavaScript interface. This has been demonstrated
by existing ad libraries [3, 7]. Second, sensitive information
could be inferred by malicious ads through reading private
files of the host app, or publicly accessible files on SDCard,
without invoking any privacy-concerned API [8]. Thus, we
need a practical and complete solution to confine advertise-
ments, including ad libraries and ad contents.

In this work, we propose , a user-level solution
to confine ads in Android apps. Our solution does not need
to change the Android framework, and it does not require
the root privilege, thus can be readily deployed. Specifically,
it leverages two sandboxes, i.e., the and
the for the purpose. The permission sandbox
isolates permissions used by ad libraries from the ones
used by the host app. In this case, ad libraries are running
inside an isolated sandbox with their own permissions and
contexts, thus cannot abuse permissions of the host app to
perform aggressive operations. The file sandbox separates
file-related operations of ad libraries and ad contents. All
the file read and write operations are confined inside a
sandbox. They cannot touch any file outside this sandbox.
By doing so, our system ensures that ad libraries and ad
contents cannot directly retrieve or indirectly infer any
private information by accessing files of the host app.

We have implemented a prototype of . Our
implementation is based on three key techniques, including
binder hooking, in-VM API hooking and GOT hooking [23]
to reliably regulate permission-related and file-related op-
erations. Specifically, to intercept the privacy-concerned
APIs, proposes a technique called binder hook-
ing which leverages Java dynamic proxy to reliably hook
Android framework APIs and apply security policies. Com-
pared with systems using bytecode rewriting [22, 24–27]
to intercept framework APIs, provides a robust
and tamper-resistant way to hook these APIs, even in the
case of code obfuscation, Java reflection and dynamic code
execution. To regulate file-related operations, first
leverages in-VM API hooking to redirect corresponding
APIs to our own implementation. This works for the APIs
in ad libraries, however, does not work for the ad con-
tents accessing local files through WebView component and
JavaScript interface. Further, hooks the GOT table
of the WebView component to regulate the file access of
rich-media ads. After intercepting privacy-concerned and

file-operation APIs, enforces security policies to
allow or deny such access, or provide bogus values in some
cases.

To evaluate the effectiveness and compatibility of
, we apply on 5001 representative apps

that embed the top 10 ad libraries according to App-
Brain [28]. Our evaluation results indicate that
can successfully detect and block ad libraries from accessing
users’ private data. Moreover, file operations from ad li-
braries and ad contents are isolated, and attempts to manip-
ulate local files have been detected and blocked.
is compatible with existing ad libraries and popular apps,
and the performance overhead is low.

In summary, this paper makes the following contribu-
tions:

• We propose a practical solution called to
confine advertisements, including both ad libraries
and ad contents, without the need to change the
Android framework or existing ad libraries.

• We propose two user-level sandboxes, i.e., the per-
mission sandbox, to isolate the privacy-related oper-
ations of ad libraries, and the file sandbox to confine
the file operations of ad libraries and ad contents.

• We have implemented and evaluated a prototype of
. The evaluation results demonstrate the

effectiveness and compatibility of . And it
incurs low performance overhead.

The rest of the paper is structured as follows: we first in-
troduce the necessary background information in Section 2.
We then present the motivation examples and provide a case
study of existing ad libraries in Section 3. We illustrate the
design, implementation, and evaluation of our system in
Section 4, Section 5, and Section 6, respectively. We discuss
the limitation and potential improvements to our system in
Section 7 , and the related work in Section 8. Finally, we
conclude the paper in Section 9.

2 BACKGROUND

In this section, we briefly introduce the key concepts of
Android system, ad libraries and ad contents to provide
necessary background information of the proposed system.

2.1 Android Permission Model

Android is an open source system using Linux kernel. Each
app is running within a separated runtime environment2,
and has its own unique running environment. When a
new app starts, the pre-initialized zygote process forks a
new process, and loads all native libraries (e.g., libc) and
the Android framework which contains all the framework
APIs into memory. Note that the runtime is not the security
boundary. The security boundary is the app sandbox based

1. Among these 500 apps, 395 ones can successfully integrate our
system, and 105 ones fail mainly due to the integrity check (see
Section 6.1).

2. This runtime environment is called Dalvik runtime in old Android
versions and ART runtime in Android versions above 5.0.
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on Linux UID mechanism. Due to this, an app could inter-
cept native libraries in the app’s own process space without
any security constraints. That is what we do in the in-VM
API hooking and GOT hooking.

Android takes advantage of the underlying Linux op-
erating system to isolate different apps and their resources
by making each app run in its own Virtual Machine with an
unique UID. Unless explicitly specified, one app cannot read
other app’s files by default. To communicate with system
services and perform dangerous operations, an app should
require corresponding permissions. And these permissions
should be granted by users when the app is being installed.
For instance, if the app wants to send SMS messages in
the background, then the app should have the
permission.

Ad libraries and the host app are running inside a same
virtual machine and sharing the same privileges. Thus, ad
libraries could probe and abuse permissions of the host
app [3], which causes privacy concerns to users, and further
ruins the reputation of the host app. However, in order to
get revenue from the ad network, app developers have no
choice but trusting and integrating ad libraries. We need a
practical solution to confine these libraries.

2.2 Ad Library and Ad Content

To integrate ad libraries into host apps, app developers need
to register and get an account from ad service providers
(ad providers). This account is the unique identification
of the app (and the app developer). Then app developer
downloads the SDK provided by ad provider and integrates
the SDK into the host app. The SDK communicates with ad
provider’s network, retrieves and renders ad contents in the
host app. Note that, ad contents fetched from the network
are usually provided by advertisers, not the ad provider.

Ad libraries require some extra permissions to work
properly. The host app has to request these permissions
on behalf of ad libraries. For instance, ad libraries need
to connect to the remote server to retrieve ad contents at
runtime. Hence, the host app has to request the
permission for ad libraries. Also for the purpose of location-
based ads, location-related permissions are required by ad
libraries, including the and the

. In addition, ad libraries could probe
permissions that the host app has and behave accordingly.
One way to do this is that ad libraries invoke the framework
API ( ) to check whether the
host app has particular permissions, e.g., , and then
behave aggressively if the app has such permissions.

To provide rich-media ads, ad libraries usually leverage
the WebView [29] component to display images, videos,
and export native functionalities, i.e., framework APIs, to
ad contents through the Java-JavaScript bridge. WebView
acts like a lightweight web browser which can be embedded
in an app. Since Android 4.4, the WebView component is
mainly based on Google’s Chromium open source project.
It has most of Chromium’s features such as the JavaScript
engine, which can be used by ad contents to do operations
dynamically at run time. Similar to other web browsers, the
WebView component has the privilege separation mecha-
nism based on the same origin policy. Hence, the JavaScript

of ad contents cannot read any content from other origins.
To bridge the JavaScript code and the native functionali-
ties of the app, Android provides the
mechanism [30]. But this mechanism raises security con-
cerns due to two reasons. First, if not carefully implemented,
the mechanism could introduce vul-
nerabilities. For instance, for apps targeting API level 17 and
below, the JavaScript code of malicious ad contents could
leverage any exposed to execute arbi-
trary payload [31] using Java reflection, with permissions
of the host app. In addition, many ad contents are loaded
over a clear text channel. Attackers could launch Man-in-
the-Middle attack to hijack ad contents and inject malicious
ones [4]. Second, ad contents fetched and executed in the
host app’s context are provided by advertisers. Malicious ad
contents could abuse this mechanism to invoke dangerous
functions through explicitly exposed
by ad libraries. This risk is usually missed by previous
works which only confine ad libraries, and it motivates our
system to confine ad contents as well.

3 MOTIVATING EXAMPLES

In this section, we first give examples of real threats caused
by ad libraries and ad contents, and then we report the
state of the art of privacy-related behaviors in ad libraries.
Both the real threats and the current situation of ad libraries
motivate our work to confine advertisements in apps.

3.1 Aggressive Ad Libraries

As stated before, since ad libraries and the host app share
same permissions, ad libraries could abuse the host app’s
permissions and behave aggressively.

Plankton Plankton [3] is an ad library that has been in-
cluded into apps in Google Play Store. It leverages the
dynamic code loading capability to download and execute
bytecode at runtime. Due to this, it is hard for the bytecode
rewriting systems to confine such behaviors. Specifically,
when the library is loaded into execution, it probes per-
missions requested by the host app, and then uploads the
obtained permission list to a remote server. After that, the
library downloads a Jar file containing the payload (the dex
bytecode) and loads the payload into execution. By doing
so, the downloaded payload could evade static analysis and
make it hard to be detected. According to the report [3], the
downloaded payload has the capability to create shortcut,
access browser bookmarks, collect local log information, etc.

Taomike Taomike is a popular mobile ad solution plat-
form in China and the company provides ad library to
help developers render rich-media ads. However, this ad
library was found to steal SMS messages and upload the
messages to a remote server without users’ consent [32].
Specifically, this library registers a receiver to monitor the
event of receiving SMS messages, and then uploads SMS
messages to a remote server controlled by the company. SMS
messages often contain highly sensitive information, e.g.,
the authorization code for mobile banking purpose. Hence,
this behavior is considered beyond legitimate functionalities
of an ad library.
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3.2 Vulnerable Ad Libraries

In the following, we will describe one type of vulnerable ad
libraries. This is due to the bridge between JavaScript and
native framework APIs.
PontiFlex Ad Library PontiFlex [4] is an ad library em-
bedded in many apps, and was found to be vulnerable
due to the . Specifically, this ad library
initializes a list of JavaScript interface which connects to the
underlying native framework APIs. As a result, the fetched
ad content could use JavaScript to invoke framework APIs,
which otherwise are not accessible from the JavaScript in-
terface. However, the ad library is vulnerable because the
ad contents are fetched through HTTP protocol without
any integrity check. As a result, attackers could hijack the
fetched ad contents and inject malicious JavaScript code into
the ad contents. Then due to the exported framework APIs
through the , attackers could remotely
execute arbitrary commands in the context of the host app,
with all permissions the host app has. PontiFlex is not the
only one that is vulnerable, previous research also revealed
other vulnerable ad libraries [33, 34].

3.3 Malicious Ad Contents

Ad libraries usually leverage the WebView component to
render fetched ad contents. Ad contents are confined using
the same origin policy of the WebView component.

However, ad contents could infer sensitive information
through other ways. Recently, Son et al. showed that mali-
cious ad contents could infer browser history by accessing
cached images and HTML files on external storage [8].
Specifically, to reduce network traffic, the Dolphin browser
caches images in external storage, and ad contents could use
JavaScript to determine whether a file of a website exists
on the storage. By doing so, malicious ad contents could
determine whether a particular website has been accessed
by users using the Dolphin browser. This is just one of the
proposed attacks shown in the paper. Other attacks include
ways to infer social graph, gender preferences for dating
partners, user trajectories, etc.

3.4 Study of Existing Ad Libraries

Though we have shown security concerns in previous sec-
tions reported by other researchers, we want to further un-
derstand the state of the art of ad libraries and their privacy-
related behaviors. To this end, we collected 27 world-wide
ad libraries according to their popularity on AppBrain [35].
Due to the special nature of the Android ecosystem in China,
e.g., highly customized Android systems without Google
services, we also collected 29 ad libraries which are popular
in China. Moreover, to check whether ad libraries perform
more privacy-concerned operations than other libraries, we
collected 119 popular development tool libraries on App-
Brain for comparison.

To automatically check the behaviors of each library,
we wrote a python script for this purpose. Specifically,
we first download the latest SDK provided by each ad
provider. The downloaded SDK usually is in the format
of a Jar file containing Java class files. Then our pro-
gram translates the class files into Java source files. At

TABLE 1
Results of sensitive operations of ad libraries and development tool

libraries

Chinese
Ad Libs

World-wide
Ad Libs

Development
Tool Libs

Read/Write Contacts 3%(1/29) 0%(0/27) 7%(8/119)
Read SMS 3%(1/29) 0%(0/27) 0%(0/119)
Send SMS 48%(14/29) 19%(5/27) 5%(6/119)
Read Location 72%(21/29) 59%(16/27) 5%(6/119)
Read IMEI 97%(28/29) 44%(12/27) 6%(7/119)
Read Phone Number 10%(3/29) 3%(1/27) 0%(0/119)
Read Accounts 0%(0/29) 11%(3/27) 3%(4/119)
Read App List 55%(16/29) 33%(9/27) 0%(0/119)
DexClassLoader 17%(5/29) 7%(2/27) 2%(2/119)
WebView 93%(27/29) 85%(23/27) 9%(11/119)

last, for each privacy-related behavior we are interested,
we develop a corresponding signature. Our program uses
the signature to analyze the ad library. For instance, to
check whether the ad library accesses user’s geographi-
cal location to provide location-based ads, our program
leverages the signature of well-defined framework APIs,
including , ,

, etc. We acknowledge that our program
is conservative and may miss privacy-concerned behaviors
in ad libraries. For instance, if the ad library leverages
code obfuscation, dynamic code execution or Java reflec-
tion to invoke framework APIs, these behaviors may not
be detected by our program. Nevertheless, our study still
provides an insight of the low boundary of the privacy-
concerned behaviors of ad libraries we studied.

Table 1 shows the results. First, we found that reading
IMEI number is a common behavior in ad libraries. In
addition, some ad libraries are reading phone numbers.
We believe this is because ad service providers use this
type of information to create unique identification of each
user (or each device). Second, compared to development
tools, the percentage of the behavior of location access
is surprisingly high in ad libraries. This may because ad
libraries need location information to provide more precise
ad targeting, e.g., location-based advertisements. Though
accessing location is a common practice in ad libraries, we
argue that this behavior should be confined, since both ad
libraries and advertiser could leverage location information
to precisely and continuously track users.

Moreover, some behaviors cannot be justified in ad li-
braries. There are no legitimate reasons for ad libraries to
send SMS messages in the background, read users’ SMS
messages and retrieve application list. For instance, around
48% (14 of 29) of Chinese ad libraries have the capability
to send SMS messages in the background, and the percent-
age of world-wide ad libraries is 19% (5 of 27). Reading
installed app list does not require any permission, but raises
privacy concerns because ad libraries could leverage the
list to infer user’s private information [6]. We also found
that, is used by 5 Chinese ad libraries and
2 world-wide ad libraries to dynamically load bytecode
into execution. These libraries cannot be easily confined by
static bytecode rewriting tools, since the loaded bytecode
could be remotely downloaded at runtime. These aggressive
behaviors show the demanding need to practically confine
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Fig. 1. The overall design of AdCapsule

ad libraries.

4 SYSTEM DESIGN

4.1 Overview

Threat Model In this work, in-app ad libraries and ad
contents are untrusted. Ad libraries are untrusted either
because they are aggressive or malicious, or they are not ma-
licious but vulnerable. For better ad targeting, ad libraries
have the motivation to aggressively track users, using the
retrieved identifier, location data or the list of installed apps.
While for ad contents, they are untrusted because they are
possibly malicious. Note that ad contents fetched from the
ad network are usually provided by advertisers, not the ad
providers. Advertisers could leverage malicious ad contents
to infer user’s sensitive information by accessing user’s
location or local files using JavaScript [8]. App developers
are trusted and they want to get revenue from ad providers
by integrating ad libraries into their apps. At the same time,
they have the incentive to maintain the reputation of their
apps and regulate these libraries. Similar to other works, we
trust the underlying Android framework and the operating
system.

Overall Design The goal of our work is to confine ad-
vertisements, including in-app ad libraries and ad contents.
To this end, we propose a user-level solution to sandbox
ads, which does not need the change of underlying Android
framework. Specifically, our system consists of two different
sandboxes. The first one is the , which
regulates permissions that could be abused by ad libraries.
This sandbox intends to regulate the privacy-concerned
operations of ads. The other one is the , which
provides a separate area of files for ads. Advertisements
cannot read or write any files outside the sandbox. This
sandbox prevents ads from directly reading private files of
the host app [6], or inferring user information based on the
determination of existence of particular files [8].

Figure 1 shows the overall design of our system. The di-
rect interaction between ad libraries and sensitive Android
framework APIs is not allowed (Æ). Our system intercepts
such interactions and applies security policies specified by
app developers (¨ and ≠), while the host app itself can
invoke the underlying framework APIs freely (Ø). For file

operations, our file sandbox allocates a special area for ad-
vertisements. Only this special area could be read or written
by ad libraries (±). Any file access outside this special area
will be blocked by our system. However, the host app is not
restrained by and can operate on files normally
(∞). In the following, we will describe these two sandboxes
respectively.

4.2 Permission Sandbox

The main purpose of the permission sandbox is to regu-
late privacy-concerned behaviors of ad libraries (and ad
contents) and enforce security policies at runtime. There
are several design challenges in our permission sandbox.
First, we need to bridge semantic gaps between privacy-
concerned behaviors of ad libraries and the underlying
Android framework APIs. For instance, if we want to
regulate the behavior of accessing location, we need to
find corresponding framework APIs that could be used to
obtain locations. Second, our system intercepts interactions
between ad libraries and the underlying Android frame-
work to enforce security policies. But reliable interception
of Android APIs is difficult since ad libraries could use Java
obfuscation and dynamic code loading to invoke framework
APIs and evade regulation. Third, we need to obtain the
context of framework API calls, and distinguish whether
the invocation is from app code or from ad libraries. We
only need to regulate framework API invocations from ad
libraries.
Bridging Semantic Gaps Fortunately, Android framework
APIs have a well-defined mapping with privacy-concerned
behaviors. For instance, in order to send SMS messages
in the background, the app should invoke the framework
API . In our system, for each
sensitive behavior that needs to be confined, we find the
corresponding Android framework APIs. Then we hook the
invocation of such APIs in ad libraries and add reference
monitor code to check and enforce security policies, e.g.,
block the access.
Binder Hooking After finding corresponding APIs of
privacy-concerned behaviors, our system needs to intercept
such APIs. Previous systems either modify the Android
framework [36, 37] or leverage bytecode rewriting [22, 24–
27, 38] for this purpose. However, statically rewriting the
bytecode cannot deal with dynamic code loading at runtime.
In our system, we propose a new mechanism called

, which reliably hooks the Android framework man-
agers and proxies their APIs. It does not require extra
efforts to support dynamically loaded classes, and naturally
tolerates obfuscation of the app’s bytecode because the
app eventually needs to call those interposed APIs to be
effective.

Our binder hooking is implemented through Java dy-
namic proxy mechanism [39]. By leveraging this mecha-
nism, our system proxies different manager objects, e.g.,

, and applies security policies in the proxy
manager objects. Specifically, for each privacy-concerned
API, we find the corresponding manager object and put a
proxy there. Then we add reference monitor code in the
proxy and control the behavior of ad libraries. Similarly, to
confine ad contents in the WebView, we hook and proxy the
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Fig. 2. Binder hooking of LocationManager

in the WebView, and configure the WebView’s
setting through our proxy object. WebView in ad libraries
will be restricted by its WebSettings. After that, privacy-
concerned operations of ad contents in the WebView are
confined. For instance, ad contents cannot access user’s
location.

To illustrate the whole process, we use the hooking
process of the as an example. When an ad
library wants to obtain one user’s location, it queries the

and get the object through
the framework API . Then the ad library
communicates with the returned and the

launches RPC call to the system server to
get the current location (¨ and ≠ in Figure 2). To interpose
this process, our system uses a proxy object to replace the
original object. All the requests from the ad
library goes through to the proxy first (Æ). Then the proxy
object checks the predefined policies (∞). If the operation is
allowed, then the request goes through to the system server
(Ø). Otherwise, the request is blocked or a fake location is
returned according to security policies.

Context Aware Policy Enforcement After interposing the
APIs, our system enforces security policies specified by app
developers. For instance, if the ad library is not allowed
to read the geographical location, our system enforces this
policy in the reference monitor.

However, the app code and the ad library is running in-
side the same process and can invoke the same set of frame-
work APIs. For instance, like ad libraries, the app code could
use the same framework APIs to obtain the current location.
Our system needs to distinguish the actual caller of the
API, i.e., the context of the API invocation, to enforce right
policies. In our system, we leverage the call stack to infer the
context of certain API calls. Specifically, if the trace of the
call stack contains the package name of the ad library, then
the function is invoked from the method in the ad library.
Figure 3 shows the function call stack from the AdMob li-
brary to get WebView’s WebSettings. From this stack, we can
find that this function call contains the method inside
the class , which is
in the AdMob library. After getting the context of the API in-
vocation, our system enforces security policies accordingly.

Note that multi-thread is not an issue for our system.

com.xidian.webview.WebviewChromiumHandler.invoke
$Proxy3.getSettings
android.webkit.WebView.getSettings
com.google.android.gms.internal.gu.<init>
com.google.android.gms.internal.gu.a
com.google.android.gms.internal.u.a
com.google.android.gms.internal.u.a
com.google.android.gms.internal.fa$2.run

Fig. 3. The call stack of getSettings of WebView from the AdMob library

Our system checks the call stack, and we can get the stack
trace from the function of a new thread. If the new
thread originates from the ad library, it will contain the ad
library’s package name and we can successfully identify the
ad library.

4.3 File Sandbox

The purpose of the file sandbox is to regulate all the file
operations of ad libraries and ad contents. As a result, ad
libraries and ad contents cannot manipulate any private files
of the host app on the internal storage, or public files on the
external storage. All the files that ad libraries could access
are in a special area of the file system. However, we cannot
use the binder hooking technique introduced in permission
sandbox (Section 4.2) to interpose file operations, since file
access mainly happens in the framework layer (and the We-
bView component) without going through the system server
managers. To interpose file operations, we introduce other
two techniques, i.e., and .
In-VM API Hooking In-VM API hooking is implemented
through direct manipulation of VM’s internal data struc-
tures. The VM maintains a data structure for each Java
class in the app, through which we can find the methods of
the class. To interpose framework APIs (Java methods), our
system finds the corresponding method pointers in the class,
i.e., on Dalvik and on ART, and replace
them with our own implementation.

Specifically, in order to operate on files, an ad library
needs to use file-IO APIs of the Android framework. All
these APIs eventually go to the methods inside the
class. We hook file-IO related methods inside this partic-
ular class. For APIs which pass a file path as the param-
eter, we apply a sandbox namespace prefix to the path.
As a result, all files that ad library can touch is inside
the sandbox with this special namespace. For instance,
if the ad library opens the file with the path /data/data/-
com.hostapp/files/files_open, then the actual file opened is
/data/data/com.hostapp/ad_sandbox/files/files_open. Of course, to
prevent the ad library from escaping the sandbox using the
path traversal technique, we need to sanitize the file path in
our sandbox.
GOT Hooking Besides file operations from ad library, ad
contents could also access files using HTML or JavaScript.
In this case, the file access from HTML and JavaScript even-
tually goes through the WebView component and accesses
the files from the native layer of the WebView. Our system
leverages GOT hooking to intercept file access from the na-
tive layer of WebView. Specifically, the WebView component
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1 cls = Class.forName("android.os.ServiceManager");
2 Method getServiceMethod = cls.getDeclaredMethod(
3 "getService", String.class);
4 IBinder rawBinder = (IBinder)getServiceMethod.invoke(
5 null, SERVICE_NAME);
6
7 BinderProxyHookHandler bh = new BinderProxyHookHandler(
8 rawBinder, interfaces);
9 bh.setmInterfacehandler(createBinderProxyHookHandler(

10 rawBinder, stubClass));
11 IBinder hookedBinder = (IBinder)Proxy.newProxyInstance(
12 cls.getClassLoader(),
13 new Class<?>[]{IBinder.class}, bh);
14
15 Field sf = cls.getDeclaredField("sCache");
16 sf.setAccessible(true);
17 Map<String, IBinder> c =
18 (Map<String, IBinder>)sf.get(null);
19 c.put(SERVICE_NAME, hookedBinder)

Fig. 4. The code snippet of binder hooking

links to its native libraries such as libc.so for file operations.
We hook the GOT table of WebView’s native libraries and
redirect the file-related APIs to our own implementation. We
can redirect all the file operation of ad libraries into the file
sandbox.

However, both the app and the ad library could use the
WebView component, and it is not an easy task to distin-
guish the request source in our reference monitor code in the
native layer. For the Java framework APIs, our system lever-
ages the stack trace to distinguish whether a request coming
from the ad library or the app code itself (see the Context
Aware Policy Enforcement in Section 4.2). However, in the
native layer, it is difficult to reliably obtain the stack trace. To
solve this problem, we leverage the
callback in the WebView component. Specifically, this API
is called when the WebView component accesses the local
and remote resources, including local files. We can easily
distinguish the request source in this callback based on the
Java stack trace because this callback is in the Java layer.
For the file access request from the app code, we open and
return the file resource, and for the file access request from
the ad library (and the ad content), it passes through to the
native layer of the WebView and is regulated by the GOT
hooking of our system.

5 IMPLEMENTATION

We have implemented a prototype of . The per-
mission sandbox and file sandbox are implemented in Java
and C++ programming languages. The security policies
are implemented in XML format. In this section, we will
illustrate the detailed implementation of this prototype.

5.1 Permission Sandbox

As discussed in Section 4, the permission sandbox leverages
binder hooking which is implemented using Java dynamic
proxy mechanism. For each manager object our system
is hooking, we create a corresponding proxy class to ac-
complish the hooking before the initiation of the app’s
code. Figure 4 shows the code snippet of binder hooking.
Take the as an example, first
obtains the original object of the
by querying the local class (lines 1-5) and

the value of the parameter is a constant
value . The returned
object is packed into the proxy handler using the Java
dynamic proxy technique [39] (lines 7-13). The method

in line 9-10 return a handler
( ), which will be put into a Java map, the
static field of the class
(lines 15-19). After that, when the ad library obtains the

, the system will lookup the Java map
inside the class. In this case the

instead of the original one will be returned,
and the context will be checked and the policy will be
enforced afterwards.

5.2 File Sandbox

Binder hooking cannot directly apply to the file sandbox
since file operations do not go through the manager object
of the system service. To this end, we propose in-VM API
hooking and GOT hooking to regulate file related opera-
tions.
In-VM API Hooking Our in-VM API hooking mechanism
is implemented in a native library similar to AndFix [40]
and YAHFA [41]. Our system detects the underlying
runtime and performs differently. For file operations
implemented in the Java layer that need to be hooked,
our system finds the structure in the VM
using the native method on Dalvik and

on ART. Then it creates a stub Java
method which contains the reference monitor of our
system for target method and swaps these two method
structure pointers. For example, if we want to hook a
Java method on Dalvik, we can swap the data structure
of the stub method and the target method directly, which
is always encoded inside the structure. When it
comes to ART, it is a bit complicated. We have to define
the corresponding data structure of the on
each version of ART first, and then find and swap the

,
and of the stub

and the target . By doing so, the
invocation of the original Java method will be redirected
to the stub method. And the stub method then checks the
context of the invocation. If the invocation is from the ad
library, then our system applies corresponding security
policies.
GOT Hooking In-VM API hooking can deal with file-
related operations of ad libraries in Java. However, it cannot
deal with the file operations from the ad content rendered
by the WebView component, since these file-related oper-
ations eventually go to the native layer. To this end, we
apply GOT hooking to intercept file access of the Web-
View component in the native layer. Specifically, our system
first finds the base address of the WebView component

in the app’s memory space using
its own memory map ( ). As the file

on Android is in the ELF format,
our system locates the GOT table of this library in the
memory. Then we find the base address of the target method
in GOT table and changes the corresponding GOT entry
of file-related operations such as , to our own



1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2018.2814999, IEEE
Transactions on Dependable and Secure Computing

8

1 webview.setWebViewClient(new WebViewClient() {
2 @Override
3 public WebResourceResponse shouldInterceptRequest(
4 WebView view, String url) {
5 WebResourceResponse response = null;
6 if (isFilepath(url)&&isFromApp(getcallstacktrace())){
7 response = new WebResourceResponse("", "",
8 getPath(url));
9 }

10 return response;
11 }
12 });

Fig. 5. The code snippet to distinguish the context of file operations

stub code. Our stub code adds a prefix to the file path. By
doing so, we redirect all the file-related operations to our
own implementation in the native layer.

However, one challenge is that we need to distinguish
the context of app code and ad library in the native layer.
In our system, we leverage the API
for this purpose. Figure 5 shows the code snippet. For each
URL to be loaded, we first check whether this is a file
path. If so, we then check the context using the stack trace
(in Function isFromApp() - line 6). If the request comes
from the app code, we directly open the file and return the
resource (lines 7 - 8). Otherwise, a null response is returned
(line 10) and the WebView will open the file using native
functions, which will be intercepted by our GOT hooking
and redirected to the file sandbox.

5.3 Confined Operations and Security Policies

We follow previous works [42, 43] to obtain the permission-
API mapping. Table 2 shows the privacy-concerned
operations confined by our current prototype. It is
relatively easy to extend this list by hooking more
APIs if needed. For example, our system can monitor

’s , ,
, , ,

, , ,
,

and methods in the current prototype. If we
want to monitor more methods in the ,
we just need to add these API names into the

’s API name list and define the
corresponding fake return values. If we want to extend our
system to more managers, we need to copy the code and
adjust the manager name, API name list and corresponding
return values. We leave the extension of this list as one of
our future works.

For each privacy-concern behavior that is regulated, our
system provides different types of security policies. In the
current prototype, our system supports three different con-
figurations: , and . The configuration
means that the access of the API should be granted.
means that our system denies the access to such API. But
for different APIs, our system acts differently according to
the type of the return value of the API. For example, if the
security policy of the API to send SMS messages is denied
(the return value is ), our system blocks it immediately.
But when it comes to the API to obtain device serial number
(the return value is ), a fake value will be returned.

TABLE 2
Confined operations in our system

Hooked Service Manager Confined Operations

ActivityManager Contentprovider to access contacts and SMS
CameraManager Camera related operations
ClipboardManager read or write clipboard
LocationManager access location
NotificationManager display notification
SmsManager send SMS
TelephonyManager read phone information
PackageManager read app list
AssetManager access app resources
WifiManager operate on Wifi

1 <?xml version="1.0" encoding="UTF-8"?>
2 <root>
3 <infor id="">
4 <PackageName>com.package.adlibrary</PackageName>
5 <ManagerName>
6 android.telephony.TelephonyManager
7 </ManagerName>
8 <MethodName>getDeviceId</MethodName>
9 <Permission>deny</Permission>

10 </infor>
11 <infor id="">
12 <PackageName>com.package.adlibrary</PackageName>
13 <ManagerName>
14 android.app.NotificationManager
15 </ManagerName>
16 <MethodName>enqueueNotificationWithTag</MethodName>
17 <Permission>allow</Permission>
18 </infor>
19 </root>

Fig. 6. An example of security policy

This is useful because ad libraries expect a String value is
returned and they need to use the returned value to function
properly. In the case, returning a fake value to ad libraries is
a better choice since the ad library can function well, while
at the same time user’s privacy is protected. If the policy
sets or has not been defined for one behavior, a prompt
window will be displayed at runtime to alert users that the
ad library is doing something which needs to be confirmed.
This means our system supports both predefined policy by
app developers and runtime confirmation of app users.

In the prototype, all the policies are specified using an
XML file when integrating our system. Figure 6 shows an
example policy used in our prototype. From this policy, the
ad library is not allowed to obtain the real IMEI number of
the device (a fake IMEI number will be returned), while it is
allowed to display notification.

5.4 Impact of Code Obfuscation

As the deployment of our system is during the app’s devel-
opment cycle by app developers, they have to provide se-
curity policies based on package/class names of ad libraries
when integrating our system. However, code obfuscation
tools, e.g., Proguard, is enabled by default in Android
studio, and the package/class names of ad libraries could be
changed by the tool, which will impact the specified security
policies. We developed a python script to help developers to
analyze package names of ad libraries before and after code
obfuscation based on Proguard’s map file. Similar map files
also exist in other code obfuscation tools. Table 3 shows an
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TABLE 3
Package Names of Chartboost

Before Obfuscation After Obfuscation

com.chartboost.sdk com.b.a
com.chartboost.sdk.impl com.b.a.e
com.chartboost.sdk.InPlay com.b.a.a
com.chartboost.sdk.Libraries com.b.a.b
com.chartboost.sdk.Model com.b.a.c
com.chartboost.sdk.Tracking com.b.a.d

example of package names of Chartboost library before and
after code obfuscation by Proguard.

5.5 Anti-modification

Since our system has the same privilege with the ad library,
and they are running inside the same process, malicious
ad libraries could bypass our system leveraging the similar
hooking mechanisms we used. Further, ad libraries can in-
voke the services or remove our system by native code. Our
system took this into consideration and proposed several
mechanisms for self-protection. First, our system is the first
component that is started in the app. Like other systems, this
is done by using the Application class [44, 45]. Second, our
system hooks all the related methods of Java reflection, e.g.,
Class.forname() and Method.invoke(), so that the ad library
cannot use Java reflection to change the proxies we have
placed. Third, ad libraries are not allowed to load native
libraries into execution. This is a reasonable assumption
since the ad library does not have legitimate reasons to load
native code. In fact, only 1.06% ad libraries [22] are using
native libraries, and we leave it as a future work to confine
the native code of ad libraries.

5.6 System Deployment

Our system is mainly developed for app developers. In
particular, app developers integrate our library together
with ad libraries into their projects, and add a few lines
of code to activate when the app is started. After
that, developers can define the security policies according
to ad library’s package name list and put the policy file into
the raw apk file. Finally, developers can sign the apk file and
upload it to the app store. More scenarios of our system can
be found in Section 7.

Developers may set the policy of to some op-
erations. In this case, users should take care the prompt
windows when using the app. These windows will tell users
that the ad library is performing some operations that need
to take further actions.

6 EVALUATION

In this section, we evaluate the effectiveness, compatibility
and the performance overhead of our system.

TABLE 4
Evaluation Results on Real Applications

Operations Total Ad Libraries

File 240 191
TelephonyManager 74 15
PackageManager 325 311
AssetManager 280 3
NotificationManager 69 1
LocationManager 53 9
AccountManager 10 0
WifiServiceMessenger 48 0
Contact 5 0
SMS 3 0
WebView.getSettings 101 62

6.1 Effectiveness

Real Apps and Ad Libraries To evaluate the effectiveness
of our system, we downloaded 500 apps from Google play
store. These apps are reported to contain ad libraries. Specif-
ically, we downloaded the top 50 apps in each of the top 10
categories according to AppBrain. Then we develop a tool
to repackage the app to include . To this end, we
first decompile the apk into smali files using Apktool [46].
And then we inject our system into these apps by changing
these smali files. After that, we convert the smali files to the
apk file again. At last, we generate a public-private key pair
and sign the generated apk file. Note that, this repackaging
process is only for evaluation purpose. The main deploy-
ment of our system is during the app’s development cycle
by app developers.

For 500 apps we downloaded, after integrating our sys-
tem using the repackaging method described previously, 59
apps failed to generate apps and 46 crashed. To further
investigate whether the crash is caused by , we
repackaged these 105 apps without integrating our system.
It turns out that these apps still failed. We then manually
analyzed these apps which crashed and found that the
failure is mostly due to the integrity check used by these
apps, such as checking the signing key. We believe this
type of integrity check is used by apps to prevent them
from being pirated. And some apps crashed because of the
network error, download error and others. Nevertheless,
there are still 395 apps left with our system for evaluation.

Table 4 shows a summary of our test results. The first
column shows different operations that our system could
confine. The second and third column show the number
of operations detected by our system in total and in ad
libraries respectively. can distinguish privacy-
concerned operations from the host app and ad libraries
successfully, and apply corresponding policies. For instance,
among 395 apps, ad libraries in 311 apps read the list of
installed apps or probe host app’s permissions through
the . Ad libraries in 9 apps retrieve user’s
location through the .
Hypothetical Ad Library To further evaluate the effec-
tiveness, we developed a hypothetical ad library which
aggressively abuses the host app’s permissions for malicious
purposes, and steals host app’s files. We use this hypotheti-
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TABLE 5
Evaluation Results on the Hypothetical Ad Library

Operations Ad Library Regulated

Read IMEI Y Y
Read SMS Y Y
Send SMS Y Y
Access Location Y Y
Access Clipboard Y Y
Access Contacts Y Y
Access App List Y Y

cal ad library to evaluate the effectiveness of our system in
the worst case. We integrate this ad library into an app we
developed. In addition, to evaluate the context-aware policy
enforcement for ad libraries, the app also performs privacy-
concerned operations and invokes sensitive APIs. We want
to evaluate whether could distinguish the context
of the API invocation.

Table 5 shows the evaluation results. can
capture the privacy-concern APIs from the hypothetical ad
library and apply corresponding security policies. In addi-
tion, our system can successfully distinguish the context of
API invocation and only apply security policies for the ad
libraries, not the app code itself.
Malicious Ad Contents As presented by previous re-
search, malicious ad contents could infer sensitive informa-
tion by accessing local files or inferring the existence of local
files using JavaScript [8]. According to the paper, GoodRx
is a popular app to help patients compare prescription drug
prices and find coupons at more than 60, 000 US pharmacies.
But it caches pictures of user’s drugs, which could be used
to infer the user’s health information.

To evaluate the effectiveness of to confine
malicious ad contents, we use the Dictionary app which con-
tains AdMob library, the most popular ad library provided
by Google. The AdMob library downloads ad contents in
plain text from the remote server, and it is easy for us to
intercept the network packet and replace it with our own
malicious ad contents. The malicious ad content reads files
of the GoodRx app, the same attack as shown in previous
research [8].

Specifically, the AdMob library in the Dictionary app
fetched a normal ad content and displayed successfully
(Figure 7 (a)). Then we intercepted AdMob’s network traffic
and injected a malicious ad (in the format of HTML), which
is similar to the attack proposed in the paper [8]. In partic-
ular, the injected malicious ad detects the existence of local
images of the GoodRx app using the JavaScript described in
the paper. Since the GoodRx app caches pictures of searched
drugs, the ad contents can successfully read the local image
files (in Figure 7 (b)). Note that for demo purpose, the
image file of cached drug is displayed in Figure 7 (b).
In real attack, the files is read and uploaded to a remote
server in the background. After integrating our system, the
injected malicious ad contents cannot load the image files
since all the local files operated by the ad contents are
inside a file sandbox with its own namespace (Figure 7 (c)).
This evaluation demonstrated that, because of our system,
malicious ad contents cannot directly operate on the local
files and all the attacks proposed in the paper [8] based on

(a) (b) (c)

Fig. 7. Evaluation results of the confinement of ad contents

local file access are no longer effective. Meanwhile, non-ad-
contents in host app remain unaffected.

6.2 Compatibility

During our evaluation, for each repackaged app with
, we run the app for five minutes and use the

Monkey [47] to generate different inputs and system events
such as keyboard events. We also parsed the app’s manifest
file and start services and activities if they are exported.
We did not observe any crash of these apps. To further
evaluate the compatibility, we uploaded repackaged apps
to testin [48], a free testing platform of compatibility on
different Android devices with different versions. The re-
sults showed that all these apps passed the compatibility
test without any problem caused by our system.

6.3 Performance Overhead

After evaluating the effectiveness and compatibility, we then
evaluate the performance overhead introduced by our sys-
tem. Our evaluation is on a XiaoMi 2S phone with Android
version 4.4 and HongMi Note 3 phone with Android version
6.0. For the privacy-concerned APIs, our system checks the
stack trace to know the context and distinguish the ad
library from the host app. This is a time-consuming task.
In addition, our system queries and enforces security poli-
cies. These operations may increase the time used to finish
the invocation of framework APIs. We picked nine typical
privacy-concerned operations and tested the time used to
perform these operations with and without our system.
For each operation, we tested 100 times and calculated the
average time used to invoke these APIs. The results are
shown in Table 6. The time increased for most operations
is below 1 ms, which is beyond the range that users can
actually perceive [49].

7 DISCUSSION

In this section, we will discuss possible limitations and
potential improvements of our system.

First, our system mainly adopts binder hooking, in-VM
API hooking and GOT hooking to reliably hook the privacy-
related APIs. However, these techniques can be bypassed
through native libraries. For instance, ad libraries can load
a native library to call the managers directly or remove all
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TABLE 6
Performance Overhead Introduced by AdCapsule

Operation Android4.4 (ms) Android6.0 (ms)
Original Overhead Original Overhead

Get Clickboard 3.04 0.78 1.16 0.13
Show Notification 6.29 1.09 2.38 0.31
Get IMEI 1.72 0.42 1.42 0.01
Open Camera 496.76 0.77 125.80 0.57
Send SMS 10.18 0.64 6.35 0.28
Add Contact 333.78 3.67 205.48 2.56
Read SMS 18.65 0.78 4.89 0.17
Get Location 5.17 0.78 1.61 0.07
Open File 0.79 0.59 0.32 0.14

the hooks we have placed. However, we argue that we can
disable the native library loading in ad libraries, since the
native code is always used for the performance. We do not
think there are legitimate reasons to use native library inside
the ad library. Indeed, this assumption is true in practice.
According to PEDAL [22], only 1.06% ad libraries are using
native libraries. In terms of confining native libraries, we
think SFI-based isolation [45, 50–53] could be leveraged. For
instance, AppCage [45] leverages both the dynamic binary
rewriting and static compiler-based binary instrumentation
to confine native libraries in Android apps. Our system
could take the similar approach to dynamically rewrite
the native code in ad libraries. Both NativeGuard [50] and
Boxify [53] leverage the process boundary to confine native
code, but with different approaches. Specifically, Native-
Guard disables the sensitive operations (or permissions)
with predefined policies, while Boxify uses the new security
mechanism, i.e., the isolated process, for this purpose. We
could build a sandbox for native code of ad libraries using
the separated processes as these two systems. However,
how to implement an efficient communication between the
bytecode and native code needs to be further studied. That
is because every JNI call becomes a remote procedure call
(RPC) across the process boundary, which introduces extra
overhead. NaClDroid [51] adopts the native client compiler
to build the confined native libraries. However, it requires
the availability of the source code of the native libraries,
which is not a reasonable assumption in our scenario. There
are other ongoing works conducted by researchers. We
believe that the research progress in the field of native code
confinement of Android apps could be borrowed by our
system in the future.

Second, we use Java stack trace to identify the context,
e.g., the API is invoked from the app code or from the ad li-
brary. However, this mechanism does not work in WebView
when ad contents retrieve the location using JavaScript.
That is because most operations are implemented in the
native code of the WebView component. As discussed in
Section 4.2, our system hooked the in the We-
bView and can only disable the access of the location when
the WebView is first loaded. That is to say, our system can
not return a fake location at runtime when the ad content
is accessing the location. This is a limitation of our system,
and we leave it as a future work. In addition, leveraging Java
call stack introduces performance overhead to our system.
During our evaluation, we found that nearly 80% of the

performance overhead is caused by the operation to obtain
the Java call stack at runtime. It would be better if we
could find an alternative solution to get the context of API
invocation with less performance overhead.

Third, our system does not need to change the frame-
work. Hence, it is easier to be practically deployed than the
solutions with framework modification. There are several
scenarios that our system could be deployed. First, with
the engagement of app developers, our system could be
deployed during the development process of the app. App
developers include our system and specify security policies
when integrating ad libraries. This is the most natural sce-
nario to use our system. Second, our system could be used
in the enterprise app market in the scenario of BYOD. In this
case, if the app’s code has been obfuscated, previous work
[54–56] could be leveraged to detect ad libraries. Then the
app could be repackaged to include our system, as we did in
the evaluation, without the engagement of app developers.
This ensures that ad libraries running on devices in the
enterprise environment cannot leak private information,
such as location and SMS messages. Nevertheless, how
to facilitate the integration of our system is still an open
question.

Fourth, we use the package name to identify the ad
libraries. Different from previous works, how to identify the
ad library is not a concern in our system. That is because our
system is for app developers and we are working towards
the original ad libraries (i.e., the jar file), instead of the
obfuscated classes that have been mixed with app’s code. It
is much easier to identify the source of ad library using the
imported jar files in the app. Thanks to the publicly available
data sources of third-party libraries [54], we could identify
the libraries more precisely in our work.

8 RELATED WORK

Privacy Concerns of Mobile Advertisements Mobile ad-
vertisements have raised security and privacy concerns in
past years. AdRisk [7] is the first system that exposes the
potential security and privacy issues inside the in-app ad
libraries. The authors studied 100, 000 apps from the official
Android Market in March-May, 2011. From these apps, they
identified 100 representative in-app ad libraries and further
developed a system called AdRisk to systematically identify
potential risks. The results showed that most existing ad
libraries aggressively collected private information, includ-
ing location, call logs, phone numbers, etc. Moreover, some
libraries make use of an unsafe mechanism to directly fetch
and run code from the Internet, which immediately leads to
serious security risks. Another work [57] collected a sample
of 114, 000 apps and then extracted and classified the em-
bedded ad libraries. They found that the use of permissions
of ad libraries has increased, and more libraries are using
permissions that pose particular risks to users’ privacy.
Recently, researchers systematically studied the reach of mo-
bile advertisements, with the help of machine learning and
data mining technique [6]. They found that, ad networks
can obtain users’ private information from the data collect
from the device, such as interests, demographics, medical
conditions, etc.
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Besides ad libraries, ad contents also cause serious pri-
vacy issues [8]. Son et al. presented the risks posed by
malicious ad contents. Based on the experimental results
on several popular ad libraries, they found that aggressive
ad contents can infer sensitive information about users by
accessing files on mobile devices and track users. At the
same time, researchers systematically studied the redirec-
tions in mobile ad contents [58]. When users tap on an ad,
he or she may be redirected to another link, which could
be a fraudulent website, or a site containing malicious apps.
Our work is motivated by risks raised by ad libraries and
ad contents, and provides a practical solution to confine
advertisements.

Solutions to Mitigate Risks of Mobile
Advertisements To mitigate threats of ad libraries,
several solutions have been proposed by researchers.
AdDroid [18] is one of them. It introduced additional
ad-related APIs which are supported by the ad service
in the Android framework, so that ad contents can be
shown without requesting privacy sensitive permissions.
AdSplit [19] modifies the Android framework to separate
the host app and the ad libraries by running them in
different processes. Zhang et. al. proposed AFrame [20],
which provides permission, display and input isolation to
separate ad libraries from the host app. However, all these
systems require to change the Android framework, which
obstacles the practical deployment.

Data-Sluice [59] is a framework to control the incoming
and outgoing data for each Android app, including ad
libraries and ad contents. It can remove undesired adver-
tisement banners or annoying popups, however, this may
reduce app developers’ revenue. ADSandbox [10] decides
whether a site is malicious or not by detecting attacks
through JavaScript. And AdSentry [12] uses a shadow
JavaScript engine to sandbox untrusted ads. There are also
origin-based works [60–62] confining ad contents and the
available JavaScript interfaces. They all can eliminate the
threat exposed by ad contents, but left the threat of ad
libraries.

Recently, researchers proposed PEDAL [22]. It leverages
bytecode rewriting technique to confine in-app ad libraries.
Specifically, it first identifies ad libraries packaged within
an app and then rewrites them. Privacy-related code in ad
libraries are redirected to the reference monitor. As a result,
ad libraries work under user’s control and cannot behave
aggressively. PEDAL is limited by the code obfuscation,
Java reflection and especially the dynamic code execution
at runtime. Our system confines advertisements at runtime,
and is immune to dynamic code execution of ad libraries.

CASE [63] is a more general system aiming at module-
level security policies in apps. By interposing a set of
selected VM internal functions and system call interfaces,
CASE monitors inter-module crossings encountered during
an app execution. It utilizes Java call stack trace to identify
the caller, as we did in our system. However, it does not
work towards WebView, the important component of ad
libraries to render rich-media advertisements.

Smartphone Apps Security and Privacy Besides ad li-
braries, apps also cause serious privacy and security con-
cerns. Researchers have proposed various techniques to

understand or assess the risks of smartphone apps. Android
Malware Genome Project [64, 65] collected and character-
ized Android malware. It collected more than 1, 200 mal-
ware samples that cover the majority of existing Android
malware families at that time and characterized them from
various aspects. TaintDroid [66] leverages dynamic infor-
mation flow technique to track the data flow of private
data inside the app. This system found several cases that
smartphone apps are leaking private information. PiOS [67],
on the other side, uses static analysis technique to analyze
the apps to find the potential paths between the code of
retrieving private data to the ones that send data out.

To confine smartphone apps, some systems extend the
Android framework to provide fine-grained control of apps
at runtime [36, 37, 68–71]. For example, AppFence [36]
and TISSA [37] can return mock results of the sensitive
resources such as the location. User-driven access control
is a promising solution to provide in-context and non-
disruptive permission granting [72]. From another perspec-
tive, researchers have proposed systems to confine apps
in user space with bytecode rewriting [24–27, 38] or na-
tive library interposing [44]. Similar system also exists on
other platforms [73]. However, these systems are working
towards the whole app, not the ad libraries and ad contents
which have different goals and challenges.

9 CONCLUSION

In this work, we propose a user-level solution to confine
advertisements, including ad libraries and ad contents. Our
system could be readily deployed since it does not need to
change Android framework, nor needs the root privilege.
It leverages two sandboxes to confine privacy-concerned
operations and file operations of advertisements. We have
implemented a prototype of our system and the evaluation
results demonstrate the effectiveness and compatibility of
our system, and the performance overhead is low.
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