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Abstract
Selective data protection is a promising technique to de-
fend against the data leakage attack. In this paper, we revisit
technical challenges that were neglected when applying this
protection to real applications. These challenges include the
secure input channel, granularity conflict, and sensitivity
conflict. We summarize the causes of them and propose cor-
responding solutions. Then we design and implement a pro-
totype system for selective data protection and evaluate the
overhead using the RISC-V Spike simulator. The evaluation
demonstrates the efficiency (less than 3% runtime overhead
with optimizations) and the security guarantees provided by
our system.

CCS Concepts: • Security and privacy → Hardware se-
curity implementation.

Keywords: selective data protection, tag architecture
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1 Introduction
Selectively protecting sensitive data is a promising tech-
nique to defend against the data leakage attack. Some recent
systems [5, 6, 23, 33] implement this type of protection to
improve the performance by only protecting the sensitive
data instead of all memory objects. To achieve this, they
require the developer to annotate variables that may con-
tain sensitive data and then use the static analysis tool to
find all potential candidates, e.g., variables copied from the
sensitive data, that need to be protected. DataShield [6] and
ConfLLVM [5] prepare dedicated memory regions and ad-
ditional bound checking for potentially sensitive variables.
Ginseng [33] protects sensitive data by always putting it into
registers except when task switching or interrupts occur.
Although these approaches are different in details, they

all use the static data flow analysis to find out possible mem-
ory locations that may hold the sensitive data. Then they
instrument all load and store instructions that could oper-
ate on these locations to achieve the protection. However,
this methodology suffers from the following shortcomings.
First, the static analysis has a precision issue in the points-
to analysis [34] when locating sensitive data. Second, the
protection granularity is coarse-grained. When protecting a
sensitive candidate inside a data structure, they need to mark
the entire structure as sensitive, introducing unnecessary
performance overhead.
To resolve these shortcomings and achieve practical pro-

tection, we introduce Conch, a solution to selectively safe-
guard the confidentiality of data against diverse data leakage
attacks. The goal is to ensure that the sensitive data is never
exposed to untrusted user-space memory as plaintext for its
entire lifetime. To this end, Conch leverages the dynamic in-
formation flow tracking [7] technique supported by underly-
ing hardware (tagged architecture) to offer precise selective
data protection, thus solving the imprecise static point-to
analysis problem. Also, the protection is in the machine-
word-level granularity, which is more fine-grained than the
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structure-level granularity. Besides, Conch utilizes the hard-
ware supported in-memory cryptographic transformation
with per-thread encryption keys to offer robust confiden-
tiality protection. With the protection of our system, the
attacker cannot spoil the confidentiality of the sensitive data
even under a strong threat model since the leaked data is
encrypted.

However, when applying this solution to real applications,
we need to confront three challenges that were usually ne-
glected by previous systems. First, the sensitive data can be
from external sources such as a file. The data could be stored
by the OS kernel into a user-provided buffer when using the
system call (e.g., the read system call) to read the content
from the file. Thus, a mechanism is needed to mark the sen-
sitive data inside the buffer. Second, the granularity conflict
between the hardware tag and the memory manipulation
instructions (load and store) needs to be solved. Otherwise,
the tag for sensitive data could be cleared, compromising the
security guarantees of sensitive data protection. Third, the
sensitivity conflict will cause semantic compatibility of the
program. We need to find a solution to maintain the compat-
ibility, while at the same time, cannot introduce the security
loophole that could be abused by the attacker to bypass our
protection.

We implement a system prototype on the RISC-V simula-
tor with new instructions, tagged registers, and cache. We
also implement the tag prorogation inside the CPU pipeline.
We use the mibench [15] and the real-world applications to
analyze the performance overhead when protecting sensitive
data. After that, we perform a security analysis to evaluate
the security guarantees provided by our system. The result
shows that our system can safeguard the confidentiality of
sensitive data with a performance overhead that is less than
3%.

Contributions In summary, our work makes the follow-
ing main contributions.

• We propose and implement a system to efficiently safe-
guard the confidentiality of the sensitive data against
diverse data leakage attacks with a strong threat model.

• We summarize three technical challenges that were
usually neglected by previous systems when apply-
ing selective data protection to real-applications, and
propose corresponding strategy to confront them.

• We evaluate the overhead and security guarantees
provided by our system. The result shows that Conch
can successfully defend against sensitive data leakage
attacks with an appropriate performance overhead.

2 Background
2.1 Sensitive Data Leakage Attack
The attack uses vulnerabilities in programs to exfiltrate sen-
sitive data from the memory. In the following, we present
typical scenarios that lead to sensitive data leakage.

1 // p is the pointer to incoming packet
2 n2s(p,payload);
3 pl=p;
4 buffer=OPENSSL_malloc (1+2+ payload+padding);
5 bp=buffer;
6 *bp++= TLS1_HB_RESPONSE;
7 s2n(payload ,bp);
8 memcpy(bp,pl,payload); // over -read at pl!
9 r = ssl3_write_bytes(s,TLS1_RT_HEARTBEAT ,buffer ,3 +

payload+padding);

Figure 1. The vulnerable tls1_process_heartbeat() func-
tion in OpenSSL version 1.0.1f.

Format String Vulnerability Attackers could exploit the
format string vulnerability [25] to gain arbitrary memory
read and write primitive. Even though many tools are pre-
sented to detect this vulnerability, it is still exists in real-
world applications [1, 2] nowadays.
Buffer Over-read It is a type of vulnerability where a pro-
gram, while reading data from a buffer, overruns the buffer’s
boundary and reads (or tries to read) adjacent memory [29].
For instance, the HeartBleed vulnerability allows the attacker
to over-read around 64KB data from the memory buffer adja-
cent to the allocated buffer for the heartbeat packet. Besides,
existing exploits use vulnerabilities like the type confusion,
off-by-one, and the integer overflow to corrupt the meta-
data, especially the length of a dynamic object to achieve the
buffer over-read primitive.

2.2 Tagged Architecture
The tagged architecture, proposed in 1973 [12], equips the
machine memory with additional tags. Since its debut, it has
been leveraged for security hardening, e.g., dynamic infor-
mation flow tracking (DIFT) [11, 17, 18, 22, 28, 30], memory
safety [13, 32], instrumentation and debugging [14], capabil-
ity protection [19, 32], and others [9, 26, 27]. For example,
Minos [8] uses one-bit tags to indicate the integrity of code
pointers. CHERI [32] also uses one-bit tags to decide if an
address stores a valid capability. The Morpheus [13] uses
two-bit domain tags to distinguish between code, code point-
ers, data pointers and other data. Our work also leverages
the tagged architecture for runtime sensitive data tracking.

3 Motivating Example and Threat Model
The HeartBleed Vulnerability The HeartBleed (CVE-
2014-0160) is a serious vulnerability in the OpenSSL library.
It is a buffer over-read bug in the implementation of the heart-
beat extension, which allows the attacker to leak sensitive
data from the remote server. The code snippet in Fig. 1 shows
the vulnerable function (tls1_process_heartbeat()).

Specifically, the vulnerable function allocates a buffer (line
4) with the payload size (payload) extracted from the heart-
beat request packet (line 2), which is controlled by the at-
tacker. It finally constructs the heartbeat response packet
using this buffer (line 6 to 9). The attacker can craft a ma-
licious heartbeat request packet with a large value at the
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payload field while only appending a small size of payload.
Despite the size of the buffer for storing the actual request-
ing packet (what pl points to) is much less than the value
of the payload, the memory copy is still executed, resulting
in the buffer over-read bug. As a result, the sensitive data
in memory could be leaked to attacker. To defend this, our
system ensures that sensitive data is always encrypted in the
memory, with the encryption key maintained by the kernel.
The vulnerability may still exist. However, it cannot be ex-
ploited to leak the private data in the plaintext. The basic
idea is straightforward. However, making it work for real
applications needs to solve three challenges, which we will
discuss in Section 5.
Threat Model and Assumptions Our system assumes
a strong threat model that the attacker can read arbitrary
use-space memory. This can be achieved through the na-
ture of the vulnerability (the HeartBleed). However, the at-
tacker cannot inject code into execution due to the avail-
ability of DEP. Also the attacker cannot hijack the control
flow of the program. These assumptions align with previ-
ous works [5, 6, 23, 33]. We do not consider the exploit of
kernel vulnerabilities to leak user-space memory. Also, the
side-channel attack and the cold-boot attack are out of the
scope.

4 Overall System Design
Our work aims to selectively protect sensitive data by ensur-
ing that it is never exposed to untrusted user-space memory as
plaintext ever since its initialization. To this end, our system
requires the developer to annotate the source of sensitive
data. Then the compiler wraps the source with new CPU
instructions to enable tag initialization. When the program
executes on the CPU, it utilizes the tagged architecture to
dynamically track the propagation of the sensitive data in-
side the registers and caches. Before any tagged data being
written into the memory, an encryption engine will trans-
parently encrypt the data. As a result, the sensitive data will
never be leaked as plaintext in the user-space memory. In
the following, we will illustrate the main steps of our system.
Annotating Sensitive Data Conch selectively tracks and
encrypts the developer-specified sensitive data. By focusing
only on this subset, the performance overhead can be limited.
Moreover, this human-in-the-loop strategy can be flexible
and accurate compared to an automatic one [11].

Most of the previous systems [5, 6, 33] take the type-based
annotation and allow the developer to mark the definition of
memory objects in the source code to regard them as sensitive.
For instance, ConfLLVM allows the developer to annotate
the top-level definitions, i.e., global variables and function
signatures, while Ginseng only allows the annotations of
local variables. However, the type-based annotation cannot
support fine-grained protection because the granularity of
the sensitive data remains in the data structure level. For

Conch, developers just need to add annotations at the sensi-
tive data starting point, aka, sensitive sources. The compiler
will automatically generate the machine instructions to mark
the data as sensitive (using the memory tag.) Though the
idea of annotating is rather simple, it is not trivial to im-
plement because the sensitive data can come from multiple
sources, such as files in the disks, inputs from keyboards, and
random bytes from the pseudo-random number generator.
The challenge will be discussed in Section 5.

Propagating Tags In our system, a one-bit tag is applied
to amachine word. As a result, it only imposes 1.56%memory
space overhead on modern 64-bit architecture. The memory
accesses will be split into the data access and the tag access.
To decrease the incurred extra DRAM traffic overhead, the
tag cache optimization is adopted, which is proven to be
highly useful [16, 27].

The tagged architecture is similar to systems for informa-
tion flow tracking [4, 13]. The architecture associates each
data with its tag in both the execution pipeline and the mem-
ory hierarchy. To offer robust protection, it introduces tag
(or taint) propagation rules that enable a lifetime tracking
for the sensitive data as well as its transformed variants.
The rules strictly ensure all operations that involve sensitive
data should propagate the sensitivity to the result. When the
CPU executes a memory unrelated instruction, the tag of
the source register may propagate to the destination register,
according to the propagation rules. For memory related in-
structions such as store and load, the tags should be stored
into, or loaded from the memory together with the data. To
facilitate this process, our system augments the registers and
caches to hold the tags.

Encrypting Data Our system encrypts the sensitive data
(tagged data) before being written into the memory. With
the memory tag, the encryption engine is transparent to
the program as it does not require any instrumentation to
distinguish sensitive data from others.

Our system utilizes a strong block cipher namedQARMA [3].
Compared with the commonly used AES, the major advan-
tage of QARMA is that it enables an additional input named
tweak to parameterize the permutations. For each memory
word, our system chooses its address as the tweak used in
the encryption. Hence the same sensitive data in different
addresses will have different encrypted outcomes, which
increase the difficulty of cryptanalysis.
Our system has fine-grained management of the encryp-

tion keys by the operating system kernel. Once the system is
booting, each CPU processor randomly generates a master
key. After that, when a new thread is created, a per-thread
key will be generated using this master key and then be
associated with the context of this thread. Our system offers
two additional micro-architectural registers that cannot be
accessed from user-space to store the master key and the cur-
rently in-use thread key. The master key register preserves
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the master key ever since its initialization. The thread key
register, however, keeps changing as the thread is actively
scheduling. During the context switch, the old thread’s key
will be saved on the kernel stack, and the current thread’s key
is loaded. With this fine-grained key management, Conch
provides a trusted guarantee to the robust encryption de-
fense.

5 Practical Challenges
Though the architecture is straightforward and similar to the
previous one [13], applying such a defense on real programs
needs to confront several challenges (These challenges were
usually ignored by previous systems [13, 23, 24]. In this
section, we will present the details of these challenges and
the coping strategies.

5.1 Sensitive Input Channel
The sensitive data is not allowed to be exposed in the user-
space memory without encryption. However, the sensitive
data may already reside inside the memory before the de-
veloper has the chance to annotate it, e.g., written by the
system call in the OS kernel. In other words, our system
should pay attestation to every possible channel through
which the sensitive data enters into the user-space memory
(Sensitive Input Channel in this paper).

Previous systems either omit this problem [23] or require
the developer to rewrite the code and ensure the buffer
that receives the sensitive data is protected via isolation [6],
which requires additional engineering effort. Our system
proposes a design of sensitive input channel that can asso-
ciate the tag to the sensitive data and initialize the defense
before the data being written into userspace memory. The
construction of this channel is not trivial due to the follow-
ing two reasons. First, the sensitive data may come from
various sources, such as files in the disks, keyboards, net-
work sockets. Second, the sensitive input channel should not
change the way (or the APIs) that are used to maintain the
program’s compatibility.

Specifically, Conch leverages the OS kernel to build the sen-
sitive input channel. This is because the kernel is in charge
of processing the data from the sensitive source and placing
it into the supplied user-space memory buffer. However, the
kernel has no idea whether the incoming buffer contains
sensitive data or not. A direct solution is to use dedicated
devices for sensitive inputs like Ginseng [33], which needs
extra UART devices. However, it does not satisfy the issues
of multiple types of input sources.

Our system solves the issue by allowing the developers to
inform the kernel that the passing buffer will contain sen-
sitive inputs. To accomplish this, it patches existing system
calls in the kernel. For instance, a file is opened with the
specified O_SENSITIVE flag so the kernel can return a file
descriptor associated with the additional attribute. When

the program reads data from this special file descriptor, the
kernel can switch to the sensitive input channel and initialize
the protection before the data is placed into the user-space
buffer.
We argue that the design choice of Conch is reasonable

and will not cause overprotected for two reasons. First, due
to our observations, we found that real applications, like
OpenSSL, will store sensitive data, like the private key, in a
dedicated file without mixing with other insensitive content.
Second, even there are some data, like the constant prefix
for a private key, is non-sensitive, it’s better to protect it and
the sensitive data as a whole to prevent attackers from easily
locating the sensitive data in memory.

In the implementation, Conch patches the copy_to_user()
function, which is an interface that transmit the data from
kernel-space to user-space memory. This function will check
if the file descriptor is opened with the O_SENSITIVE flag to
perform the actual data transmission. Besides, our system
changes the getrandom system call, which is widely used
in cryptographic algorithms, to give random value that is
protected with tags.

5.2 Sensitivity Conflict
Another challenge is the sensitivity conflict that will cause
the behaviors of program to not match the expectation. One
example is when protecting the session key of the SSL/TLS
handshaking process in the OpenSSL library, the content
that is encrypted using this session key (in the tls1_enc()
function) will be tagged as sensitive, due to the tag proroga-
tion. Thus, it will be encrypted again by Conch when writing
into the memory before being sent to the client. Hence, the
received data cannot be decrypted since the client does not
have the encrypted key maintained by Conch.

To solve this challenge, we provide an instruction that can
remove the memory tag of a buffer. The developer can insert
this instruction to the program when the data is already
protected (encrypted) and needs to be shared with another
entity (SSL client for instance.) However, we need to ensure
that this instruction cannot be abused by the attacker to
remove the tag of arbitrary memory. Fortunately, the control
flow of the program cannot be hijacked (See the threat model
in Section 3), thus the attacker cannot redirect the control
flow to remove the tag of a buffer controlled by the attacker.

5.3 Granularity Conflict
Conch has one-bit tag for a machine word. This may intro-
duce the granularity conflict between a memory tag and the
byte granularity of the memory load and store instructions.
We use the example in Figure. 2 to demonstrate this issue. As
the figure shown, there are two variables (a 4-byte array buf
and 4-byte integer i) placed into one machine word by the
compiler. The code a reads four bytes sensitive data from a
dedicated file descriptor into the buf so the memory tag will
be set to 1 because the associated machine word contains
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X X X X
	a)	read(fd,	buf,	4);
	b)	int	i	=	0;

8	bytes	memory	word1	bit	tag

1a

X X X X 0 0 0 0?b sensitive	data

insensitive	data

4	byte	buf 4	byte	i

Figure 2. The granularity conflict: The dotted frames repre-
sent the state of memory word state after the a and b lines
of code. ? marks the uncertain tag value.

sensitive data. However, after executing the code b which
puts a constant value into the variable i, the ambiguity about
the value of the tag of this memory word is introduced since
the machine word now contains both the sensitive data and
normal data.

The direct solution for this conflict is to extend the tagged
architecture to support per-byte memory tags and ensure
one tag will be necessarily associated with exactly one vari-
able, However the per-byte tags leads to a leap of memory
overhead from the 1.56% to 12.5% to store the tags. Though
there is architecture [9] claims to support unbounded bits
of tag, most tagged architectures [19, 28, 30, 32] utilize only
one-bit tags to reduce the memory overhead.

After surveying the recent works that utilize the memory
tag for security, we sadly find that this conflict is rarely
discussed. Some researches [13, 28] only focused on word
aligned objects, like pointers. Nick’s work [24] adopts the
tag to protect data in the stack. But they only discuss word-
aligned variables and ignore the fact the unaligned variables
could exist.

Conch firstly discusses the impact of granularity conflict.
To ensure the sensitive data is always protected, we decide
to retain the tag and according to our evaluation (Section
7.4), the extra overhead from over-tagging is acceptable.

6 System Implementation
We have implemented a prototype system based on the Spike
simulator by extending the pipeline and registers to con-
struct the tagged architecture. Because the vanilla Spike
lacks the simulation of cache, we write our own cache mod-
ule plugin to simulate the instruction and data cache. We
implement the extended instructions, based on the RISC-V
custom instructions support, into the Spike and modify the
v9.2.0 GCC compiler for support. Besides, we implement the
QARMA algorithm [3], i.e., QARMA5-64-𝜎1, which encrypts
64-bits block data with a 128-bits key in 12 rounds. To accu-
rately model the memory system and assess the overhead of
tag accessing, we utilize the state of art memory simulator
DRAMSim3 [20]. Last, we add the key management and the
designed sensitive input channels in the v5.4.7 Linux kernel.
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Figure 3. The runtime overhead of Conch Model A and
Model B (with tag cache support) for mibench [15]

7 Evaluation
7.1 Methodology
We adopt a methodology used in TIMBER-V [31] to estimate
the system runtime performance overhead by mapping exe-
cuted instructions into actual cycles using different pipelined
CPU models. To this end, we rewrite the histograms module
in the Spike simulator to allow the precise recording of all
executed instructions and trace all memory accesses. Specif-
ically, we first define a baseline model without the tagged
memory extension and then compare with another two mod-
els, one of which is equipped with tag cache optimization
and another one is not. Different from TIMBER-V, which as-
signs cycles for each instruction empirically, we build a more
accurate pipelined model and configure the CPU and cache
referring to the SiFive CPU manual [35]. We additionalhy
utilize the memory simulator DRAMSim3 and add the tag
cache into Spike to evaluate the memory access overhead.

Baseline CPUModel As a baseline, we configure the sim-
ulator referring to the Freedom FU540-C000 Soc. Based on
that, we model the instructions cycle according to the SiFive
manual. For the memory load and store instructions, they
cost two or three cycles depending on operand values when
the cache hits. When the cache misses, we model the latency
according to the DRAMSim3 simulator.

Conch CPUModel There are two models, namely Conch
Model A and Conch Model B. The Model B is optimized
with tag cache while A is not. For the encryption engine
of these two models, we assume a four-cycles latency for
QARMA5-64-𝜎1 to encrypt or decrypt a block, similar to
the previous work [13, 21]. For the optimized Model B, we
configure the 4KB eight-way associative tag cache.
We claim that the methodology is pessimistic guided be-

cause the decreased CPU cycles of register instructions will
relatively increase the impact caused by the memory instruc-
tions and results in a higher overhead of tagged architecture.
That is, the result can not be viewed an upper bound on the
achievable performance.
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Figure 4. The runtime overhead of Conch Model A and
Model B (with tag cache support) in real-world application
when protecting sensitive data.

7.2 Benchmarks
To estimate the cost caused by the tagged architecture, we
use the mibench [15] to measure the overhead.We use 13 pro-
grams that can be built for the RISC-V architecture without
modification with the default optimization level. Since we do
not annotate any sensitive data, the overhead is all caused by
the tag architecture. The result is shown in Fig. 3. This result
shows an average runtime overhead of 18.3% for the Model
A with the maximum value of 73.39% for the program susan,
an image processing program that performs large amounts
of memory accesses. Other programs with frequent memory
access have a comparatively high overhead compared with
the CPU-intensive programs. However, with the tag cache
optimization, the result (2.914% on average) is promising. It
shows that the tag cache can efficiently decrease the runtime
overhead of tagged architecture.

7.3 Real Programs
In this section, we use Conch to protect the sensitive data in
real-world programs and analyze the performance overhead.
We choose the cryptographic applications including blowfish
and rijndael from the mibench as targets. Besides, we select
the zip30 application and the OpenSSL library to enrich the
evaluation. The overall result is shown in Fig. 4.
Cryptographic Algorithms To protect the sensitive data
(encryption keys) of the cryptographic algorithms blowfish
and rijndael, we annotate the source code to ensure that
the password, which is involved in the generation of the
encryption key, is protected once it enters the memory. We
rewrite these two programs to read the password from the
sensitive file with the O_SENSITIVE flag. As the Fig. 4 show,
our system has low performance overhead. For the Model A,
Conch imposes 5.56% and 6.89% overhead for blowfish and
rijndael, respectively. For Model B, the overhead lower to
1.51% and 2.13%.
Cryptographic Applications We use the zip30 and the
OpenSSL as target applications. The first one is a widely
used compression utility, which implements a protection to
encrypt the file content using a user-provided password. To
protect the sensitive password, we rewrite the program to
load the password from a specialized TTY input channel.
The performance overhead is 86.55% for Model A and 15.89%

Table 1. The result of granularity conflict of 4 applications.
In the table, we show the percentage of sensitive data that
has been over-tagged and extra runtime overhead for each
application.

blowfish rijndael zip30 OpenSSL
Over-tagging 0.033%/0.14% 0%/0% 0.13%/1.04% 5.12%/2.16%

for the optimized Model B, respectively. This relatively high
overhead comes from the high frequency of memory accesses
as it trivially reads uncompressed input data chunks and
writes encrypted output to memory.

For the OpenSSL, we use Conch to protect its SSL/TLS com-
munications. Besides the sensitivemaster key and the session
key, we also protect the private key used in handshaking.
To do this, we rewrite the SSL_CTX_use_PrivateKey_file()
function to allow it to read the sensitive private key from
the specialized channel our system supplies. For the master
key and the session key, they are both obtained from the
pseudo-random generator function tls1_PRF(). Hence, we
annotate this sensitive source to initialize the protection. The
result (7.23% for Model A and 2.27% for Model B) shown in
Fig. 4 indicates the high efficacy even when protecting the
sensitive data in a relatively complex application.

7.4 Granularity Conflict Study
As discussed in Section 7.4, the choice of retaining the tag
will cause over-tagging issue. We show the experiment result
of the over-tagging ratio in Table 1.

The result shows that except rijndael, three other applica-
tions suffer from the granularity conflict. In particular, there
is 0.033% sensitive data over-tagging for blowfish. That said,
0.033% of the protected data is supposed to be insensitive.
The over-tagging result is 0.13% for zip30, and 5.12% for
OpenSSL. We additionally estimate the cost of protecting the
wrongly tagged data. The result is it imposes 0.14%, 1.04%,
and 2.16% extra runtime overhead for blowfish, zip30, and
OpenSSL, respectively.

7.5 Security Analysis
Conch aims to safeguard the confidentiality of sensitive data.
The threat model is strong as the attacker is granted with
arbitrary read and write primitive. Because Conch utilizes the
tagged architecture to dynamically track the sensitive data
and encrypt it before it is written into memory, the sensitive
data cannot be leaked.
In the following, we will analyze the possible loophole

due to the granularity and sensitivity conflict.
Granularity Conflict Our system retains the tag in the
granularity conflict. Thus it will not remove tags for sensitive
data. As a result, the security guarantees still hold, although
unnecessary data may be protected.
Sensitivity Conflict We allow the developer to rectify the
tag propagation with the ability to remove the memory tag
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of a buffer to solve the sensitivity conflict issue (Section 5.2).
In our threat model, the attacker cannot hijack the control
flow so the tag removing instruction cannot be abused to
bypass our protection.

8 Related Work
Selective Data Protection Instead of protecting all mem-
ory objects, selective data protection only focuses on par-
tial targets, such as pointers, control-flow related variables,
and the developer specified sensitive data. Some recent ap-
proaches achieve this by requiring the programmer to anno-
tate sensitivememory objects in the source code. DataShield[6]
and ConfLLVM[5] prepare dedicated memory region and
additional bound checking for the annotated sensitive data.
Tapti et al[23], similar to Conch, selectively encrypts the sen-
sitive content before it is written into memory. However, the
cryptographic transformations they designed are done by the
instrumentation code instead of the hardware engine hence
has poor performance. Ginseng[33] innovatively protects
annotated sensitive data by allocating them to registers at
compile time and only puts it into memory when task switch-
ing or interrupts occur. To defend against a compromised
kernel, Ginseng leverages the Trusted Execution Environ-
ment (TEE) to manage encryption and decryption. These
approaches bear disadvantages like high runtime overhead,
coarse granularity, and the difficulty of deploying.
Tag-based Memory Protection Several systems utilize
the tagged architecture for protection end. For example,
lowRISC[19] uses tags to specify whether a memory address
is readable or writable. HDFI[28] uses tags to achieve data-
flow integrity. CHERI[32] uses tags to indicate if a memory
address stores a valid fat pointer. Among the previous work,
Morpheus[13] is closest to Conch. It uses two-bit domain tags
to distinguish code, code pointers, data pointers, and normal
data and further adopts the domain encryption defense to
randomizes the representation of code, code pointers, and
data pointers before they are written into memory. The dif-
ference is that Conch aims to protect the developer specified
sensitive data, which is the superset of Morpheus’s target.
Additionally, Conch promises protection ever since the data
is initialized and only consumes one-bit tags, comparatively
more lightweight and easy to implement.
Information FlowTracking (IFT) IFT frameworks based
on whole system emulation[10] incur high performance
penalties, making it unsuitable for the protection of run-
ning programs. Taintdroid[11], instead, leverages the archi-
tectural features of virtual-machine-based smartphones to
enable efficient, system-wide taint tracking to monitor how
third-party applications handle the private data of users.
There are two main differences between Conch and Taint-
droid. First, Conch takes advantage of tagged architecture
to utilize hardware support taint analysis while Taintdroid
is based on the virtual machine and needs to instrument

the VM interpreter. Second, Taintdroid automatically detects
and defines privacy-sensitive sources, such as GPS location
and APP List. Hence it cannot work as flexibly as Conch to
protect specific data that the developer expects. There are
several general hardware architectures[9, 26, 27] that can
be used to achieve dynamic IFT. Conch leverages a similar
architecture compared with them but only requires one-bit
tags, which is proven to be efficient[16].

9 Conclusion
In this paper, we revisit the technical challenges that were
usually neglected by previous systems when applying selec-
tive data protection to real-applications, and propose corre-
sponding solutions. Then we design and implement a proto-
type system for selective data protection and evaluate the
overhead using the Spike simulator. The evaluation demon-
strates the efficiency (less than 3% overhead with optimiza-
tions) and the security guarantees provided by our system.
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