
This paper is included in the Proceedings of the
2015 USENIX Annual Technical Conference (USENIC ATC ’15).

July 8–10, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-225

Open access to the Proceedings of the
2015 USENIX Annual Technical Conference
(USENIX ATC ’15) is sponsored by USENIX.

SecPod: a Framework for Virtualization-based
Security Systems

Xiaoguang Wang, Xi’an Jiaotong University and Florida State University; Yue Chen and Zhi
Wang, Florida State University; Yong Qi, Xi’an Jiaotong University; Yajin Zhou, Qihoo 360

https://www.usenix.org/conference/atc15/technical-session/presentation/wang-xiaoguang

USENIX Association 2015 USENIX Annual Technical Conference 347

SecPod: A Framework for Virtualization-based Security Systems

Xiaoguang Wang†
�
, Yue Chen†, Zhi Wang†, Yong Qi�, Yajin Zhou‡

Florida State University† Xi’an Jiaotong University� Qihoo 360‡

abstract

The OS kernel is critical to the security of a computer
system. Many systems have been proposed to improve
its security. A fundamental weakness of those systems
is that page tables, the data structures that control the
memory protection, are not isolated from the vulnera-
ble kernel, and thus subject to tampering. To address
that, researchers have relied on virtualization for reliable
kernel memory protection. Unfortunately, such memory
protection requires to monitor every update to the guest’s
page tables. This fundamentally conflicts with the re-
cent advances in the hardware virtualization support. In
this paper, we propose SecPod, an extensible framework
for virtualization-based security systems that can provide
both strong isolation and the compatibility with mod-
ern hardware. SecPod has two key techniques: paging
delegation delegates and audits the kernel’s paging opera-
tions to a secure space; execution trapping intercepts the
(compromised) kernel’s attempts to subvert SecPod by
misusing privileged instructions. We have implemented
a prototype of SecPod based on KVM. Our experiments
show that SecPod is both effective and efficient.

1 Introduction

With its privilege, an operating system (OS) kernel is crit-
ical to the security of the whole system. Unfortunately,
modern kernels are too complicated to be secure – they
often consist of tens of million lines of source code. Con-
sequently, an increasingly large number of vulnerabilities
are discovered in all major kernels each year [10]. These
vulnerabilities are routinely being exploited to take over
the system. To address that, researchers and practition-
ers have proposed many solutions. For example, modern
kernels all have built-in exploit mitigation mechanisms
such as address space layout randomization(ASLR) [26]
and data execution prevention (DEP, or W ⊕ X) [12].
They significantly raise the bar of functioning kernel
exploits. However, these systems are built on top of
a weak foundation that page tables, the data structures
that control the memory protection, are always writable
in the kernel (to facilitate frequent page table updates).
Any in-kernel memory protection accordingly can be cir-

cumvented by manipulating page tables. To that end, a
stream of research has proposed to deploy memory and
other protections “out-of-the-box” in a virtualized envi-
ronment [22, 27, 28, 31, 33, 35, 37, 45]. For example,
Patagonix extends the hypervisor to identify and protect
the code running in the VM [28]. NICKLE achieves a
similar goal through memory shadowing [31].

Virtualization-based security systems are often at odds
with recent advances in the hardware virtualization sup-
port: many security tools need to intercept and respond
to key events in the VM. Each intercepted event causes
one or more expensive world switches between the vir-
tual machine and the hypervisor. On the other hand, the
hardware virtualization support, such as AMD-V and In-
tel VT, strives to reduce world switches. In particular, the
nested paging allows guests to freely update their page
tables without involving the hypervisor. However, the
guest page table update is a key event that many secu-
rity tools are interested in [27, 28, 31, 45]. This forces
the hypervisor to run in the less-efficient shadow paging
mode where updates to guest page tables are trapped and
verified by the hypervisor. To reconcile this conflict, it
calls for a new approach that can accommodate the needs
of virtualization-based security tools, but also take full
advantage of the hardware virtualization support.

In this paper, we propose SecPod, an extensible frame-
work for virtualization-based security systems. SecPod
encapsulates a security tool in a trusted execution envi-
ronment that coexists with and yet is strictly isolated from
the vulnerable kernel. Specifically, it creates a dedicated
address space (the secure space) in parallel to the exist-
ing kernel address space (the normal space). The secure
space is rigorously protected from the normal space by
the two key techniques of SecPod, paging delegation and
execution trapping: in the former, the kernel delegates
all its paging operations, including page tables and their
updates, to the secure space. The kernel is deprived of
the privilege to directly modify the effective page tables.
The secure space enforces a non-bypassable memory iso-
lation by sanitizing the guest page table updates. The
latter foils the attacker’s attempts to subvert the secure
space by misusing privileged instructions. The hypervi-
sor notifies the secure space any such attempts via signals.
The secure space can accordingly respond to the event by,

348 2015 USENIX Annual Technical Conference USENIX Association

Shadow
Page Table

Guest Virtual
Address

Physical
Address

Figure 1: Shadow paging (GPT not in effect)

Guest Physical
Address

Guest
Page Table

Guest Virtual
Address

Physical
Address

Nested
Page Table

Figure 2: Nested paging (GPT and NPT both in effect)

say, issuing an alert or terminating the VM. The synergy
of these two techniques isolates a security tool from the
(compromised) kernel.

We have implemented a prototype of SecPod based
on the popular KVM hypervisor [24]. Our prototyping
efforts show that SecPod can be integrated into an existing
hypervisor with a minimal increase to its code base. Our
experiments demonstrate the efficiency and effectiveness
of SecPod. For example, SecPod introduces about 3%
of overhead on average for the I/O-intensive SysBench
FileIO benchmark, and about 5% overhead on average
for the SysBench online database transaction benchmark.

The rest of this paper is organized as the following: in
Section 2, we define the scope of the problem and the
threat model. We then describe the design, implemen-
tation, and evaluation of SecPod in Section 3, 4, and
5, respectively. Finally, we present the related work in
Section 6 and conclude the paper in Section 7.

2 Problem Overview

In this section, we give a brief overview of the hardware
virtualization support, particularly the memory virtual-
ization support, and explain how they impact the de-
sign of security tools. Early hypervisors for x86 virtu-
alize the guest memory with shadow paging, in which
a guest page table (GPT) is superseded by its shadow
page table (SPT) [3] (Figure 1). Specifically, the hyper-
visor manages a SPT for each guest page table. Any
changes to the GPT must be synchronized to its SPT
to take effect. This provides an opportunity for secu-
rity tools to examine and control every change to guest
page tables [27, 28, 31, 33, 38, 45]. In shadow paging,
GPTs translate guest virtual addresses to guest physical
addresses, i.e., the virtual and physical addresses from
the guest’s perspective. Guest physical addresses must
be further translated to the actual physical addresses used
by the memory controller. Since SPTs are the only ef-
fective page tables, they map directly from guest virtual
addresses to physical addresses (Figure 1).

Recent x86 processors have the hardware virtualiza-
tion support. Early extensions focus on trapping sen-
sitive guest instructions, such as SGDT, SIDT and MOV
to CR3, to allow the hypervisor to virtualize the related
resources. Later revisions aim at improving the perfor-
mance with the direct support for critical virtualization

tasks. Particularly, nested paging is a hardware support
for memory virtualization in which the processor trans-
lates guest memory accesses with two levels of page ta-
bles (Figure 2): the GPT maps guest virtual addresses to
guest physical addresses, and the nested page table fur-
ther maps guest physical addresses to physical addresses
(NPT is also called extended page table. For clarity, we
use NPT.) The guest has full control over its GPTs, while
the hypervisor manages NPTs and is not aware of changes
to GPTs. Consequently, memory protection enforced in
NPTs can be circumvented by remapping the (protected)
guest virtual memory in GPTs. For example, data ex-
ecution prevention (DEP) enforced in the NPT can be
foiled by remapping the guest kernel code to the writable-
and-executable physical memory. Because of this, many
virtualization-base security systems cannot take full ad-
vantage of nested paging, which has tremendous advan-
tages in performance than shadow paging [42].

Threat model: in this paper, we assume a trusted boot-
ing protocol, such as tboot [41], is used to securely load
the hypervisor, which in turn loads the guest OS and ini-
tializes SecPod. The guest kernel is benign but contains
exploitable vulnerabilities. After boot, we assume a pow-
erful attacker exists that can change arbitrary memory of
the kernel by exploiting some vulnerabilities. Moreover,
we consider the hypervisor to be trusted. This can be
guaranteed by recent advances in the hypervisor integrity
through formal verification and integrity protection and
monitoring [25, 29, 40, 44, 46].

3 System Design
3.1 System overview
SecPod aims at providing a trusted execution environment
for virtualization-based security tools. Figure 3 gives an
overview of SecPod with the two key techniques: paging
delegation and execution trapping. In this architecture,
security tools run in a dedicated secure space defined by
the SecPod page table, while the kernel runs in the normal
space defined by the kernel page table. An entry gate and
an exit gate are responsible for switching these two spaces.
This is essentially a page table based isolation [35, 39, 46].
To switch the space, the entry or exit gate only needs to
load the respective next page table into CR3, the page
table base register of x86. The entry gate is the only
way to enter the secure space from the normal space as

USENIX Association 2015 USENIX Annual Technical Conference 349

SecPod &
Security Tool
Code/Data

SPT Pool

Entry Gate

pv_mmu_ops.alloc_pud
pv_mmu_ops.set_pud
pv_mmu_ops.write_cr3
...

Normal Space Secure Space

H
ypervisor

Trusted
Boot

DMA
Protection

G
uest GPT

Exit Gate

User Mode

Kernel Mode

Key Technique I:
Paging Delegation

VMExit
Handler

Sensitive
Instructions

Key Technique II:
Execution Trapping

Up Call

Figure 3: The overview of SecPod

guaranteed by execution trapping. SecPod provides one-
way visibility into the kernel – a security tool in SecPod
can introspect and even modify the kernel memory, but
not the other way around.

However, simple page table based isolation is not se-
cure for three reasons: first, the kernel still has full control
over its page table. This allows the (compromised) kernel
to subvert SecPod by mapping and modifying the secure
space memory. It is thus critical to validate the kernel’s
page table updates to enforce strict memory isolation.
SecPod solves this challenge with the first technique, pag-
ing delegation, in which the kernel delegates all its paging
operations to the secure space, including page tables, page
table updates, and task switches (one step of a task switch
is to load the page table of the next process to CR3). Ac-
cordingly, the kernel, including kernel exploits, cannot
modify its page tables. All the updates must be delegated
to and sanitized by the secure space. Second, the kernel
is still privileged and free to execute privileged instruc-
tions. These instructions can be misused to compromise
SecPod. For example, the kernel could use the MOV to
CR3 instruction to load a crafted page table to bypass the
secure space. SecPod relies on the second technique, ex-
ecution trapping, to eliminate this threat. Specifically,
the hypervisor intercepts sensitive privileged instructions
executed by the kernel, and forwards the captured events
to the secure space as signals. The secure space can
decide how to respond, for example, by issuing alerts,
ignoring them, or terminating the violating kernel. It
can also dispatch the events to the security tools. This
whole process is similar to the signal handling in tradi-
tional OSes. Third, the attacker could attempt to subvert
SecPod through DMA attacks [47]. DMA operations by
hardware devices use physical addresses, and thus are not
translated by page tables (page tables are used by the CPU
to translate software memory accesses.) The hypervisor
should have already employed IOMMU to thwart DMA
attacks. The secure space should be excluded from the
memory accessible to devices in IOMMU as well. In the
rest of this section, we describe these two key techniques
in detail.

GPT

SPT
N

orm
al S

pace

GPT SPT

S
ecure space

Traditional Shadow Paging Shadow Paging in SecPod

NPT

Guest

HypervisorHypervisor

Guest

Figure 4: Shadow page table in virtualization & SecPod

3.2 Paging Delegation

SecPod delegates the kernel’s paging operations to the se-
cure space in order to enforce memory isolation. Specif-
ically, the secure space maintains the shadow page tables
(SPTs) for the kernel. SPTs stay synchronized with the
kernel’s page tables. Any updates to the kernel page ta-
bles must be merged to SPTs to take effect because SPTs
are the only page tables used by the CPU. The kernel may
keep its own page tables to facilitate implementation, but
they are never loaded to the CPU for address translation.
This is technically similar to shadow paging in the tra-
ditional virtualization systems. Figure 4 compares these
two shadow paging designs. In virtualization, SPTs are
managed by the hypervisor, which is responsible for syn-
chronizing any GPT updates to SPTs. SPTs are the only
page tables in use for the guest. Accordingly, SPTs trans-
late guest virtual addresses directly to physical addresses
(Figure 1); In SecPod, SPTs are instead managed by the
in-VM secure space. It is further backed by the nested
page tables (NPTs). Both SPTs and NPTs are used by the
CPU to translate guest addresses. SPTs thus map guest
virtual addresses to guest physical addresses. In most
cases, a SPT in SecPod is a simple replica of the kernel’s
page table (unless a memory safety violation is detected
and rejected). Shadow paging in SecPod is thus straight-
forward to implement. This is in stark contrast against
shadow paging in virtualization, which is one of the most
complicated modules in a hypervisor due to its support of
many paging modes of x86 and the intricate out-of-sync
shadowing. Shadow paging in SecPod is also more effi-
cient than the traditional shadow paging – updating SPTs
in SecPod take a fast context switch, instead of a much
slower world switch in virtualization. In short, SecPod
keeps both the simplicity and efficiency of the nested pag-
ing. Even though shadow paging has long been used in
virtualization, it is, to the best of our knowledge, the first
time to be proposed in this architecture.

The kernel delegates its page tables and all paging-
related operations to the secure space, such as page table
allocation, page table updates, task switches (to write

350 2015 USENIX Annual Technical Conference USENIX Association

to CR3), and TLB flushing. The secure space exposes,
through the entry gate, a service for each of these op-
erations. To delegate these operations, we could re-
place every paging operation in the kernel with a call
to the respective service in the secure space. Fortu-
nately, for kernels that can run in a para-virtualized
(PV) VM [3], these hooks have already been embed-
ded into the kernel. For example, the Linux kernel
has a pvops framework that can figure out at run-time
whether it is running in a virtualized system and ac-
cordingly switch to the optimized low-level operations.
The pvops framework consists of several groups of low-
level operations, such as pv_time_ops, pv_cpu_ops,
pv_mmu_ops, and pv_lock_ops (defined in file arch/
x86/include/asm/paravirt_types.h). We can re-
purpose pv_mmu_ops to implement paging delegation
(Section 4.1). For a kernel without the PV interface, we
can potentially patch the kernel to implement a similar
interface.

3.2.1 SecPod Address Space Layout

Figure 5 shows the layout of the normal and secure spaces.
The normal space, as usual, consists of the kernel and the
user space. The kernel is mapped at the same location
in the secure space as in the normal space. Accordingly,
a security tool in SecPod can access the kernel as if it
is running inside it since key kernel data structures re-
main at their supposed locations. This helps mitigate the
semantic gap problem [5]. The kernel memory is set
to non-executable in the secure space to prevent security
tools from executing the (untrusted) kernel code. In the
secure space, the secure code and its data are placed in
the lower address space because the kernel usually sits
at the top (e.g., the Linux kernel often occupies the top
1GB of the address space.) The secure code provides
security tools with a compact library of useful functions
such as malloc, free, and string functions. The se-
cure data includes a repository of shadow page tables and
several hash-based data structures for fast index of that
repository (Section 3.2.3). The entry gate is the only en-
trance to the secure space from the normal space, while
the exit gate returns to the normal space. Both gates
should be mapped at the same location in the normal and
secure spaces because the page table is reloaded during
each context switch, and the page-table-reloading code is
architecturally required to remain unchanged before and
after a context switch [20]. There is also a shared page to
pass data between two spaces.

The memory for the secure space is allocated from the
kernel when the secure space is created. It is subsequently
removed from the kernel so that the kernel will not use
it for other purposes. We enforce W ⊕ X in the secure
space; i.e., the secure space can be either writable or ex-

Normal Space Secure Space

K
ernel

U
ser P

rocess

Kernel Data

R
W

-

Kernel RO Data

R
--

Kernel Code

R
-X

Kernel Data

R
W

-

Kernel RO Data

R
--

Kernel Code

R
--

SecPod Data

R
W

-

SecPod Code

R
-X

Security Tool Data
R

W
-

Security Tool Code

R
-X

Gate Data

R
W

-

Entry/Exit Gates

R
-X

User Data

R
W

-

User Code

R
-X

Figure 5: SecPod address space layout

ecutable, but not both simultaneously [12]. This thwarts
code injection attacks against the secure space in case the
security tool contains exploitable vulnerabilities. Other
attack mitigation mechanisms can also be employed to
provide stronger protection of the secure space [1, 26].

3.2.2 Secure and Efficient Context Switch

SecPod implements the page-table based isolation. To
switch the spaces, we need to load the page table of the
next space into CR3. The secure space only has one
page table, the SecPod page table, but the normal space
has many shadow page tables, one for each user process.
We need to ensure the security and atomicity of context
switches. To this end, the entry gate saves the kernel state
to the stack (generic registers and interrupt enable/disable
status), clears the interrupt (twice), and then enters the
secure space by loading its page table and stack to the
processor. This process has been described in detail by
earlier papers [35, 38]. Interested readers please refer
to those papers. The exit gate performs the opposite
operations in the reverse order to return to the normal
space.

To prevent the kernel from subverting the secure space
by loading a crafted page table, we request the hypervisor
to intercept and check every write to CR3 by the guest
(Section 3.3). However, trapping every CR3 write could
cause substantial performance overhead due to frequent
context switches. To reduce the overhead, we leverage a
hardware feature called CR3 target-list [20]. Loading CR3
with one of the four page tables in the CR3 target-list will
not be trapped by the hypervisor. This feature has been
employed by earlier work for similar purposes [35, 38].
The major difference lies in how memory is virtualized.
The previous systems use shadow paging to virtualize the
guest memory. Guest task switches are thus handled by
and in the hypervisor. This provides a convenient op-
portunity to update the CR3 target-list (CR3 target-list can
only be updated by the hypervisor). On the downside, this
prevents these systems from taking advantage of nested
paging. SecPod is designed to avoid this problem.

USENIX Association 2015 USENIX Annual Technical Conference 351

Guest Page Table Shadow Page Table

SPT Update
Verification

①

③

④
②

Fast Index
Tables

PT

PD SPD

SPT

N
orm

al S
pace

S
ecure S

pace

Entry Gate

Figure 6: Kernel Page table update verification

The hypervisor in SecPod uses nested paging, and the
guest delegates its paging operations to the secure space,
including task switches. Ideally, task switches in the
guest should not involve the hypervisor, just like in the
normal nested paging. However, there are many shadow
page tables for the guest yet the CR3 target list can only
hold four page table roots. The entry gate will never cause
any VM exits because the SecPod page table is locked in
the list. But the exit gate will if the SPT for the normal
space is not in the list. Neither the kernel nor the secure
space can update the CR3 target-list because they both
run in the guest mode. To address that, we allocate a
fixed top-level page table (FTLPT) in the secure space
and copy the top-level page table of the next SPT to it
during the task switch. As such, SecPod appears (to the
hardware) to be using only two page tables, FTLPT and
the SecPod page table. Both of them can be registered in
the CR3 target-list. Therefore, legitimate context switches
between the normal and secure spaces will not be trapped
by the hypervisor. Our prototype uses the PAE (Physi-
cal Address Extension) mode of x86 [20], in which the
top-level page table consists of four entries and can thus
be copied quickly. Most modern Linux distributions by
default use the PAE mode in their kernels because the
NX (non-executable) bit is only available in this mode.
We would like to emphasize that FTLPT is a part of the
SPT pool in the secure space and thus is not accessible
by the kernel. Note that we cannot use PCID (Process
Context Identifier, also known as ASID) to tag the TLB
– the TLB needs to be flushed during context switches
because FTLPT translates addresses for many processes.
Moreover, PCID is set in the CR3 register, but the CR3
target-list can only be changed by the hypervisor.

3.2.3 Page Table Update and Validation

The kernel delegates paging to the secure space to prevent
unauthorized modifications to its page tables. It leverages
the para-virtualized MMU interface (pv_mmu_ops) to for-
ward low-level paging operations to the secure space.
Figure 6 illustrates how a new level-3 (L3) page table is
created and filled. When the kernel needs to allocate a

new L3 page table, it sends the request to the secure space
(� in Figure 6), which responds by allocating a blank L3
page table from the SPT pool and linking it to the parent
shadow page table (�) . The mapping between the GPT
and the SPT is then recorded in a hash table for fast in-
dexing (�). When new page table entries are added to the
GPT later, it is synchronized to the associated SPT only
if no violation of memory protection is found (�). The
verifier uses several hash tables for fast fact checking.

The secure space has full control over the kernel’s
memory protection. Any updates to shadow page tables
must be vetted by the secure space. By default, the secure
space enforces the normal/secure space isolation and W ⊕
X for the kernel:
Normal/secure space isolation: this policy prevents the
(untrusted) kernel from manipulating the secure space
memory. Specifically, the kernel is prohibited from map-
ping any of the secure space memory, except the entry
and exit gates at their fixed location. For each request to
change a shadow page table, SecPod checks whether the
physical page belongs to the secure space and whether
the virtual address overlaps with the two gates (one code
page and one data page). The update is denied if either
test returns true. By doing so, the kernel cannot map the
secure space memory or change the gates.
Kernel W ⊕ X : Kernel code integrity (W ⊕ X) is es-
sential to many security tools [28, 33, 45]. Previous
virtualization-based systems leverage shadow paging in
the hypervisor to protect kernel integrity. SecPod pro-
vides the same level of protection in the VM. We use a
template-based approach to enforce W ⊕ X . Specifically,
modern kernels have already deployed W ⊕ X (without
protecting the page table) [12]. The initial kernel page
table could serve as a template for the kernel memory
protection. For each update to the kernel mapping, Sec-
Pod only needs to compare the new memory protection
against the template. Note that SecPod does not intend
to externally address weaknesses in the kernel’s original
W ⊕ X implementation (it is better to root-cause and fix
them in the kernel.) Enforcing W ⊕ X in the secure space
makes it much harder to bypass. Moreover, key kernel
data structures like the system call table are also write-
protected for both their virtual addresses and the physical
contents.

3.3 Execution Trapping
In SecPod, the kernel still has the necessary privilege
to execute critical system instructions. Without con-
straints, this privilege could be misused to subvert the
secure space, for example, by loading a malicious page
table or even disabling paging. Hence, it is necessary to
control the instructions executed by the guest. Simply dis-
allowing these instructions in the kernel’s binary does not

352 2015 USENIX Annual Technical Conference USENIX Association

Table 1: Trapped Sensitive Instructions

Instruction Semantics
LGDT Load global descriptor table
LLDT load local descriptor table
LIDT load interrupt descriptor table
LMSW load machine status word
MOV to CR0 write to CR0
MOV to CR4 write to CR4
MOV to CR8 write to CR8
MOV to CR3 load a new page table
WRMSR write machine-specific registers

work because the x86 architecture has variable instruction
lengths and “unintended” instructions can be created out
of legitimate instructions [34]. Previous software fault
isolation systems remove unintended instructions through
compiler or binary transformations [46, 48]. In SecPod,
we instead configure the virtualization hardware to trap
these instructions, no matter whether they are benign or
“unintended”. Table 1 gives a (partial) list of sensitive
instructions trapped by SecPod. Each of them controls
some important aspects of the processor. For example,
LIDT loads the interrupt descriptor table, which deter-
mines how interrupts are handled; MOV to CR0writes to
CR0, which consists of switches for many CPU operation
modes (e.g., paging enable, protected mode, write-protect
bits) [20]. Intercepting these instructions will not cause
large performance overhead because most of them are not
executed frequently after the kernel has initialized. A no-
table exception is the MOV to CR3 instruction that is used
by the entry and exit gates for context switches. However,
our design guarantees that legitimate context switches
will not be trapped by the hardware (Section 3.2.2). Note
that, SecPod not only protects these registers, but also the
associated data structures, such as the global descriptor
table and the interrupt descriptor table (Section 3.2.3).

After the hypervisor intercepts a sensitive instruction
executed by the guest, it notifies the secure space of the
event. This is similar to the signal delivery in traditional
OSes [36]. In fact, they both implement an up-call, except
that a signal is delivered from the kernel to a user process
while an event in SecPod is delivered from the hypervisor
to the secure space. When an instruction is intercepted,
the hypervisor saves the current virtual CPU state to the
virtual machine control block (VMCB) [20], and copies
the saved registers to the data page of the entry gate (to
provide the context of the violating instruction). The
hypervisor then updates the saved instruction pointer in
VMCB to the entry gate and returns to the guest. The CPU
restores the guest state from the VMCB and continues its
execution to the entry gate. The secure space recognizes
that this is an up-call from the hypervisor and handles the
violation accordingly.

4 Implementation

We have implemented a prototype of SecPod based on
the popular KVM hypervisor [24]. Both the host and the
guest run Linux. We added about 100 lines of source
code to the hypervisor to set the CR3 target-list and trap
the execution of sensitive instructions. Another 800 lines
of source code were added to the guest kernel for paging
delegation. The secure space has about 2,300 lines of
source code. In the rest of this section, we describe this
prototype in detail.

4.1 Paging Delegation
In SecPod, the guest kernel delegates its paging oper-
ations to the secure space. This gives the latter full
control over the guest’s memory mapping and protec-
tion. In our prototype, we leverage the Linux ker-
nel’s pvops interface to forward paging requests to
the secure space. The pvops interface originates
from the Xen project’s efforts to create a generic para-
virtualized kernel that can adapt to different hypervi-
sors as well as the native, non-virtualized platforms.
Pvops groups the key para-virtualization operations into
several structures, such as pv_time_ops, pv_cpu_ops,
pv_mmu_ops, pv_lock_ops, and pv_irq_ops, and sub-
stitutes native operations in the kernel with the corre-
sponding PV operations. For example, the native x86
system uses a single MOV to CR3 instruction to load the
page table. Pvops replaces it with an indirect call to
the pv_mmu_ops→write_cr3 function. Each virtual-
ization system, as well as the native platform, provides
its own implementation of these functions. Particularly,
functions for the native platform are simple wrappers of
the original native instructions or functions. Pv_mmu_ops
has all the necessary functions for SecPod to delegate pag-
ing to the secure space. For example, it has functions for
write_cr3, set_pte, set_pmd, flush_tlb_kernel,
etc. We only need to implement the required functions
of pv_mmu_ops with the respective services provided by
the secure space. In essence, this creates a MMU-only
para-virtualized platform as all the other PV operations
remain the same as the native platform.
Pvops replaces the native low-level hardware opera-

tions with indirect calls through the pv_xxx_ops struc-
tures. This introduces some minor but measurable per-
formance overhead to native systems as some of these
functions are frequently used by the kernel. Kernel de-
velopers have to reclaim the lost performance for na-
tive systems. Observing that these functions remain un-
changed after initialization, they patch the kernel code to
specialize each indirect pvops call with a direct call to
the corresponding native function, and even inline sim-
ple operations like write_cr3. Therefore, we need to

USENIX Association 2015 USENIX Annual Technical Conference 353

replace the function pointers in pv_mmu_ops before the
specialization. Changes to the pv_mmu_ops structure af-
ter the specialization will not take effect. To this end, we
modify the kernel source code to set up the pv_mmu_ops
structure early in the boot process. Because the secure
space has not been initialized yet, we use a temporary
page table as an in-kernel “shadow page table” and com-
mit the page table updates to it. The temporary page table
has to be statically allocated because the kernel memory
allocator has not be initialized either. After the secure
space is ready to run, we copy the temporary page table
to a shadow page table in the secure space.

Our guest kernel is essentially a native kernel with the
para-virtualized MMU. We intercepts the MMU opera-
tions during the early boot stage. However, any page
tables created before that have to be manually copied to
the secure space. Swapper_pg_dir is one such case. It
is statically allocated in the kernel and serves as a mas-
ter page table for the kernel address space [4]. Each
process in Linux has its own user space memory map-
ping but shares an identical kernel part copied from
swapper_pg_dir. No other processes except the idle
task use swapper_pg_dir for address translation. If
swapper_pg_dir is being loaded to CR3 for the first
time, we simply create a new shadow page table for it.

SecPod provides the entry and exit gates for the normal
space to call services of the secure space (e.g., to update
a page table). Because these gates are the only shared
code between the two spaces, context switches have to
go through them. The secure space enforces a strict nor-
mal/secure space isolation to protect these gates. The
implementation details of these gates resemble that of
SIM [35]. Specifically, the entry gate first saves the cur-
rent CPU state to the stack and disables the interrupt with
the CLI instruction. It then loads the SecPod page ta-
ble into CR3 to enter the secure space. The entry gate
has to execute CLI again in the secure space in case
the (untrusted) kernel has skipped the first CLI instruc-
tion [35]. Without a second CLI instruction if the first
is skipped, interrupts happened in the secure space halt
the (virtual) processor because the interrupt handlers are
not executable in the secure space, leading to a denial-
of-service attack. Finally, the entry gate loads the secure
stack to the stack pointer (the ESP register) and calls the
service handler. The exit gate performs the opposite op-
erations in the reverse order to return to the normal space.
We also fill the unused space around the entry and exit
gates with nop instructions to avoid accidental instruc-
tions out of otherwise random bytes [34].

There is a subtle issue in the implementation of the
entry and exit gates regarding TLB (translation looka-
side buffer) [19]. TLB is a fast cache of the virtual to
physical address translation. To access the memory, the
CPU first searches the TLB for a matching virtual ad-

dress. If a match is found in the TLB (a TLB hit), the
resulting physical address is sent to the memory unit to
access the data. If the mapping is not cached by the TLB
(a TLB miss), the CPU walks the page table to trans-
late the address and saves the result in a TLB entry for
future references. Therefore, the TLB ultimately deter-
mines accessibility of the memory. Simply reloading a
new page table cannot guarantee that the TLB contains
fresh address translations because global pages will not
be flushed out of the TLB during context switches (non-
global pages are flushed each time a page table is loaded.
For example, one way to flush all the TLB entries for
the user-space is to simply reload the current page table.)
The Linux kernel sets its kernel pages to global because
all the processes share the same kernel memory mapping.
It is thus unnecessary to flush the kernel mapping from
the TLB during task switches. Note that global pages
are accessible regardless of the PCID settings. Therefore
using PCID cannot solve this problem.

Global pages could potentially cause serious vulnera-
bilities in SecPod. For example, an attacker could syn-
thesize1, in an executable global page, a function that
loads the SecPod page table and manipulates the secure
space memory. This function remains executable after
entering the secure space because its mapping remains in
the TLB after the context switch. On the other hand, if
the secure space memory is set to global, it remains ac-
cessible after returning to the normal space. To address
this pitfall, we clear the global bits in both shadow page
tables and the SecPod page table, except for the entry and
exit gates. By doing so, the TLB will always contain
fresh address mappings after context switches, avoiding
the aforementioned pitfalls. The entry and exit gates can
be set to global because their memory is protected by
the secure space and they do not contain enough useful
gadgets for return-oriented programming [34]. TLB also
allows us to batch page table updates because these up-
dates will not take effect unless the TLB is freshened with
new translations. Therefore, we can temporarily delay the
page table updates until the TLB is flushed by the kernel,
either explicitly using special instructions or implicitly
through task switches. Our current prototype does not
fully support this optimization yet.

4.2 Security Tool Case Study
SecPod is an extensible framework for virtualization-
based security tools. A security tool running in SecPod
is strictly isolated from the vulnerable kernel, but still has
flexible visibility into the kernel. First, the kernel memory
is mapped identically in the secure and normal spaces (but
with different protection). Key kernel symbols and data
structures thus can be accessed at their original locations.
Second, any changes to the kernel’s memory mapping

354 2015 USENIX Annual Technical Conference USENIX Association

can be intercepted and adjusted, if necessary, because the
kernel delegates its paging to the secure space. SecPod
also has a simple loader and linker to dynamically load
security tools, similar to the kernel module support.

To demonstrate the flexibility of the SecPod frame-
work, we have build a security tool for SecPod to de-
tect and prevent unauthorized kernel code from execution
(e.g., kernel rootkits) [28, 31]. This tool is relatively sim-
ple to implement in SecPod, assuming the cryptographic
hashes of benign kernel code are known. Specifically,
it registers a call back function for kernel page table up-
dates. If a new executable page is created in the kernel,
it verifies whether the hash of the page belongs to the
hashes of benign code pages. If so, the page is marked
executable in the shadow page table. Otherwise, it has
detected an attempt to execute unauthorized kernel code
and raises an exception. There are a number of challenges
in implementing this system. For example, when a kernel
module is loaded, the kernel needs to resolve the called
kernel functions (e.g., printk) and patches the module
with the correct offsets to these functions. This effec-
tively changes the page’s hash, leading to a false positive
if the hash is calculated on the modified code. We solve
this problem by reversing the changes made by the kernel
module loader and computing the hash based on the clean
code page. After that, we restore the changes and verify
that each patched function is an exposed kernel function.
Many such challenges have been addressed by previous
work [28, 31]. Moreover, we employ a new feature called
supervisor mode execution protection (SMEP) in recent
Intel processors to prevent the kernel from executing user
code. The x86 architecture allows the kernel to execute
user code with the kernel privilege. SMEP is designed to
specifically address this attack. Software based defense
is also available [23].

This tool provides a similar security guarantee as
Patagonix [28] and NICKLE [31]. Both systems are
based on the then-current virtualization technologies, the
Xen hypervisor with shadow paging and hypervisors us-
ing dynamic binary translation, respectively. In contrast,
the implementation based on SecPod can take advantage
of nested paging. Note that detecting unauthorized code
solely in the NPT is vulnerable unless all the code in the
guest is authorized. Otherwise, an attacker can manipu-
late the GPT, which he has full control over, to map kernel
code pages to the unauthorized user code.

5 Evaluation

In this section, we evaluate the security and performance
of our SecPod prototype. All the experiments were con-
ducted on a physical machine with a 2.5GHz Intel Core i5
CPU and 8GB of memory. The host system runs Ubuntu
12.04 LTS with a kernel version of 3.11.0. The guest is

configured with 2GB of memory, and runs Ubuntu 12.04
LTS Server with a kernel version of 3.10.32.

5.1 Security analysis
We first evaluate the security guarantee of SecPod by
analyzing how SecPod can prevent various attacks. We
organize these attacks from three perspectives: memory
isolation violation, instruction misuse, and malicious de-
vices, with a focus on the first two. Malicious devices can
subvert the secure space (and the hypervisor) via DMA
attacks. This can be prevented using IOMMU.

Memory isolation violation: a key requirement of
SecPod is to strictly isolate the security tool from the
vulnerable kernel. This isolation is enabled by the syn-
ergy of SecPod’s two key techniques: paging delegation
and execution trapping. The first category of attacks at-
tempts to maliciously modify the secure space memory.
Because the secure space memory is not mapped in the
normal space (except the entry and exit gates), the at-
tacker cannot directly change it. Instead, the attacker has
to map the secure space memory into the normal space
directly or by tricking the secure space to do so. Both
attacks are prevented in SecPod. First, the kernel dele-
gates its paging operations to the secure space. Its own
page tables are never put in effect as prevented by execu-
tion trapping. Shadow page tables in the secure space are
not directly accessible by the compromised kernel either.
Second, the kernel might request SecPod to map the se-
cure space memory to the normal space. This is foiled by
SecPod’s page table update validation which enforces the
normal/secure space isolation. Specifically, it disallows
the normal space from mapping any physical pages of the
secure space, and protects both the virtual address and
the physical content of the entry and exit gates.

Instruction misuse: the second category of attacks
tries to subvert the secure space by misusing existing in-
structions. No new code can be injected to the kernel as
SecPod enforces W ⊕ X for the kernel, but code reuse at-
tacks like return-oriented programming (ROP) [34] may
still succeed due to the lack of control flow integrity [1].
In addition, the kernel still has the required right to exe-
cute privileged instructions. For example, it could load
a crafted page table that allows manipulating the secure
space. We address this type of attacks by trapping and
vetting the execution of critical instructions by the ker-
nel, such as MOV to CR3 (Table 1). SecPod ensures that
loading a page table other than the two legitimate ones
will be trapped and denied. It also protects the associ-
ated data structures for instructions like LGDT. Since the
kernel cannot load arbitrary page tables, it might try to
enter the secure space with interrupts enabled. This can
be achieved through the entry gate, for example, by skip-
ping the first CLI and triggering an interrupt right before

USENIX Association 2015 USENIX Annual Technical Conference 355

 0%

 20%

 40%

 60%

 80%

 100%

null
open/close

fork
signal_install

m
m

ap

TC
P_bandw

idth

file(create)

execve

select(250fd)

stat
ctxsw

(4p/16k)

B
copy(libc)

m
ain_m

em

A
V

ER
A

G
E

P
er

fo
rm

an
ce

 O
v

er
h

ea
d

Figure 7: LMBench Overhead

 0

 50

 100

 150

 200

 250

128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

File size

Linux(NPT)

SecPod

Figure 8: Apache Bench Throughput

the second CLI. The CPU would then execute the inter-
rupt handler in the secure space. Our design can foil this
attack because the interrupt handler is not executable as
soon as the CPU switches to the secure space. Never-
theless, this might cause the virtual CPU to halt because
of the non-executable interrupt handler. The attack can
also be launched with the return-oriented programming
(ROP). Normally, as soon as the CPU enters the secure
space, the kernel code becomes non-executable and the
ROP program cannot continue. However, there is a sub-
tle case in which the ROP program switches to gadgets
in the secure space upon entering it. By doing so, the
program can continue running across the context switch
because the attacking stack is mapped in the secure space.
This attack overall is hard to use because the secure space
might not contain enough useful gadgets. It can also be
mitigated by applying existing ROP defenses to the secure
space, such as control flow integrity [1], code random-
ization [26], and systematic removal of gadgets [27].

Synthetic attack: to further validate the security of
SecPod, we create a synthetic kernel rootkit that hooks the
system call table to intercept system calls like sys_read
and sys_mkdir. Our experimental security tool can de-
tect the loading of the malicious rootkit because its hash
is not in the list of hashes of benign code pages. Even
without this tool, SecPod can detect the rootkit’s attempts
to modify the (read-only) system call table – the rootkit
calls a kernel function to make the syscall table writable.
This request is forwarded to the secure space and subse-
quently denied because the secure space does not allow
the syscall table to be changed.

5.2 Performance Evaluation
To evaluate the performance of SecPod, we experimented
with micro-benchmarks and system benchmarks. The
former measures SecPod’s impact to fine-grained oper-
ations (e.g., system calls), and the latter measures the
overall system performance under SecPod. All the ex-
periments were repeated 10 times and the average results

are reported here. The deviation of these experiments is
negligible. We compare the performance of SecPod with
that of an unmodified VM backed by the nested paging
(the baseline). SecPod’s VM is also backed by the nested
paging. However, its paging operations are expected to be
less efficient than the baseline because they are delegated
to the secure space. Even though we did not compare
the performance of SecPod to that of the VMs backed by
shadow paging, previous benchmarks demonstrate that
Intel EPT provides substantial performance gains over
shadow paging for most tested benchmarks. For exam-
ple, Intel EPT can achieve an acceleration of up to 48%
for MMU-intensive benchmarks [42].

5.2.1 Micro-benchmarks

Figure 7 shows the performance overhead of SecPod for
LMBench, a set of benchmarks to measure the system call
performance. Our prototype incurs less than 5% overhead
for most of the system calls LMBench tests, such as open,
close, signal_install, and stat. These system calls
do not contain operations that require services from the
secure space. Consequently, the impact of SecPod over
these system calls is minimal. The performance degrade
is probably caused by normal task switches (of other pro-
cesses) during the tests. On the other hand, system calls
that involve page table operations suffer most. Particu-
larly, fork has the highest overhead (52.8%), followed by
execve, mmap, file creation, and context switch
(all at around 17%). Most of these system calls involve
heavy page table operations. For example, the fork sys-
tem call creates a child process that duplicates the parent
process’s address space (with copy-on-write) [36], and
each task switch in SecPod requires an extra loading of
the SecPod page table (Section 3.2.2). Our current pro-
totype does not yet support the batch-update of the page
table, an optimization that could help reduce the over-
head of these cases, especially for the fork system call.
On average, SecPod introduces about 10% performance
overhead for LMBench.

356 2015 USENIX Annual Technical Conference USENIX Association

 0

 50

 100

 150

 200

 250

 300

 350

 400

8 16 32 64 128 256 512

T
h

ro
u

g
h

p
u

t
(t

ra
n

s/
se

c)

Number of Threads

Linux

SecPod

Figure 9: Throughput of SysBench FileIO

 0

 100

 200

 300

 400

 500

 600

 700

2 4 8 16 32 64 128

T
h

ro
u

g
h

p
u

t
(t

ra
n

s/
se

c)

Number of Threads

Linux

SecPod

Figure 10: Throughput of SysBench OLTP

5.2.2 Application Benchmarks

To measure SecPod’s impact on the overall system
performance, we experimented with two benchmarks,
ApacheBench and SysBench. ApacheBench is a program
to measure how fast the system can process web traffic.
In this experiment, we run the Apache server (2.2.22) in
the VM, and ApacheBench on another physical machine
with a similar hardware configuration. Figure 8 shows the
throughput of the Apache server with regard to different
file sizes (from 128 bytes to 256KB). Each file was gen-
erated by collecting random data from the /dev/random
device. For file sizes up to 16KB, the overhead of SecPod
is less than 9% and increases to about 16% for 128KB
files and 11% for 256KB files. When the file size in-
creases, the kernel needs to update the page table more
frequently to accommodate frequent file accesses, leading
to a relatively high performance overhead. The average
performance overhead for ApacheBench is about 9%.

SysBench is a suite of multi-threaded benchmarks to
evaluate the performance of a database system under in-
tensive workloads. We use SysBench to measure Sec-
Pod’s impacts on the file I/O and the MySQL processing.
Both experiments are repeated with many different num-
bers of threads. In the file I/O experiment, we measure
the throughput using 128 files (1GB in total) and a block
size of 16KB. The results are shown in Figure 9. The
largest overhead is 3.25%. We also measure the MySQL
performance with SysBench’s online transaction process-
ing (OLTP) benchmark. Specifically, we build a MySQL
database with 1,000,000 entries and query the database
using various numbers of threads. The results are shown
in Figure 10. The performance loss is in the range of 2%
to 14% with an average of 5%. Interestingly, the perfor-
mance overhead reduces as the number of threads exceeds
32. This is probably because the performance loss caused
by the contention over shared resources outweighs that of
SecPod starting at that point. This is reflected in the de-
creasing numbers of transactions processed per second
when more than 32 threads are used.

6 Related Work

Virtualization-based Security: the first category of the
related work is a long stream of virtualization-based secu-
rity systems with diverse focuses, such as malware anal-
ysis [13], virtual honeypot [21], kernel rootkit detection
and prevention [27, 32] etc. In particular, virtualization
has been applied often in the context of virtual machine
introspection. Livewire pioneers the concept of “out-of-
VM” introspection to understand the in-VM states and
activities by parsing the raw VM resources [17]. Seman-
tic gap is one of the main challenges for VMI systems
because VMI aims at semantically inferring the in-VM
activities and states from the raw VM data (e.g., mem-
ory, disk). A number of recent systems try to address this
challenge from different perspectives [14, 16, 22, 35]. For
example, Virtuoso [14] can effectively automate the pro-
cess of building introspection-based security tools. SIM
is the most closely related system. It firstly leverages the
CR3 target-list to effectively and efficiently turn out-of-
VM monitoring in-VM. SIM is a monitoring framework
while SecPod targets at supporting generic virtualization-
based systems. Particularly, SecPod creates a trusted
execution environment for the security tool by combin-
ing two key techniques, paging delegation and execution
trapping. In addition, SecPod uses the CR3 target-list
differently to support the nested paging (Section 3.2.2).
VMI systems can be integrated with and benefit from
SecPod’s code integrity guarantee and fine-grained page
table monitoring.

Virtualization is also a popular choice of platforms to
enhance the kernel or application security [6, 28, 31, 38,
45]. For example, Overshadow is designed to protect
the secrecy of the user data even if the kernel is com-
pletely compromised [6]. Patagonix protects the kernel
code integrity through virtualization-based code identi-
fication [28]. HookSafe addresses the protection granu-
larity problem through systematic hook redirection [45].
Most of these systems require a reliable kernel code in-
tegrity. Otherwise, an attacker could subvert their pro-

USENIX Association 2015 USENIX Annual Technical Conference 357

tection by injecting malicious code. SecPod is an ideal
platform for these systems. Security tools in SecPod
are strictly isolated from the vulnerable kernel, but still
have the visibility of an in-kernel tool. As a proof-of-
concept, we implemented a security tool based on Sec-
Pod to prevent the unauthorized code from executing in
the kernel. This provides a security guarantee similar to
Patagonix [28] and NICKLE [31] (Section 4.2).

Virtualization-based systems, including SecPod, as-
sume that the hypervisor is trusted due to its smaller
code base and attack surface. However, the bloated code
base of modern hypervisors and recent attacks put this
assumption into question. There have been a series of
recent efforts in protecting the hypervisor integrity, via
formal verification [25, 30], security enhancements [44],
and size reduction and disaggregation [7, 29, 40]. These
systems can be naturally integrated with SecPod to pro-
vide a strong foundation of security.
Kernel/User Application Security: the second category
of related work includes a large number of research ef-
forts in the kernel and user application security. Address
space layout randomization (ASLR) [18] and data ex-
ecution prevention (DEP) [12] are two popular exploit
mitigation mechanisms in modern kernels. These kernel-
level protection schemes suffer from the pitfall that the
page table is not protected from exploits. SecPod reliably
enforces DEP for the kernel. ASLR and DEP could be by-
passed mainly by return-oriented-programming (ROP).
Control flow integrity is an effective defense against most
control flow attacks, including ROP, by mandating that
run-time control flow must follow the program’s control
flow graph [1, 49, 50]. Recent efforts in CFI has signif-
icantly improved its performance and compatibility with
commercial off-the-shelf applications. DEP is a prereq-
uisite of CFI. Most of the previous CFI systems target
user applications. They rely on the kernel to provide the
necessary memory protection of the code and read-only
data. Recent efforts to adapt CFI to the kernel turn to
virtualization for essential supports [8]. For example,
KCoFI [8] leverages the Secure Virtual Architecture [9]
to interpose the software and hardware interactions. All
software, including the kernel, is compiled to the virtual
instruction set of SVA. Kernel CFI can also be support
by SecPod as it provides both strong isolation and reli-
able memory protection for security tools. There is also
a series of prior efforts in implementing software fault
isolation (SFI) [15, 43, 48]. SFI aims at confining un-
trusted code in a host application. For example, Native
Client [48] uses two layers of sandboxes to safely run un-
trusted native plugins in a web browser. SFI technologies
have been utilized to isolate untrusted device drivers in
the kernel [15, 38, 39].

TZ-RKP [2], HyperSafe [44], and nested kernel [11]
are three closely related systems. TZ-RKP leverages the

ARM TrustZone to protect the kernel running in the nor-
mal world. Specifically, it instruments the kernel to pre-
vent it from executing certain privileged instructions or
updating page tables. These operations instead must be
handled by the secure world. Recently, Intel introduced a
security enclave called Software Guard Extension (SGX).
However, the instrumentation-based instruction access
control of TZ-RKP is not directly applicable to the x86
architecture because x86 has variable instruction lengths
and thus unintended privileged instructions can be cre-
ated out of the existing ones [34]. This problem can be
solved by adopting the techniques of NaCl [48]. Hyper-
Safe write-protects the hypervisor page table and uses
the x86 write-protect (WP) bit to allow benign page table
updates. It further enforces the control flow integrity [1]
to prevent that from being bypassed. Nested kernel simi-
larly protects page tables for the OS kernel, but enforces
the kernel code integrity and removes unintended priv-
ileged instructions from the kernel code (instead of en-
forcing CFI). SecPod also controls the guest page table
updates though paging delegation, but its design revolves
around the goal to provide security tools with an extensi-
ble framework that is not only compatible with the recent
virtualization hardware, but also allows them to intercept
key events in the guest kernel. For example, the sepa-
ration of the normal and secure spaces isolates security
tools from the untrusted kernel and simultaneously en-
ables an easy access to the kernel data.

7 Summary

We have presented the design, implementation, and
evaluation of SecPod, an extensible framework for
virtualization-based security systems. SecPod provides
a trusted execution environment for security tools. They
are not only strictly isolated from the vulnerable kernel,
but also have full visibility into it. Particularly, any up-
dates to the guest’s page tables can be intercepted and
regulated by these tools, allowing the fine-grained con-
trol over the guest kernel’s memory protection. By using
the in-VM shadow paging, SecPod is fully compatible
with the recent advances in the hardware virtualization
support, particularly the nested paging.

Acknowledgments: we would like to thank our shep-
herd, Andy Tucker, and the anonymous reviewers for their
insightful comments that greatly helped improve the pre-
sentation of this paper. This work is a part of the project
supported by US National Science Foundation (NSF) un-
der Grant 1453020. The first author was supported by the
grants from CSC (201306280080), NSFC (61272460),
and RFDP (20120201110010) to visit Florida State Uni-
versity. Any opinions, findings, and conclusions ex-
pressed in this material are those of the authors and do
not necessarily reflect the views of these agencies.

358 2015 USENIX Annual Technical Conference USENIX Association

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Lig-
atti. Control-Flow Integrity: Principles, Implemen-
tations, and Applications. In Proceedings of the
12th ACM Conference on Computer and Communi-
cations Security, November 2005.

[2] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar,
G. Ganesh, J. Ma, and W. Shen. Hypervision Across
Worlds: Real-time Kernel Protection from the ARM
TrustZone Secure World. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, 2014.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. L. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. In
Proceedings of the 19th ACM Symposium on Oper-
ating Systems Principles, October 2003.

[4] D. P. Bovet and M. Cesati. Understanding the Linux
Kernel. O’Reilly, 2005.

[5] P. M. Chen and B. D. Noble. When Virtual Is Better
Than Real. In Proceedings of the Eighth Workshop
on Hot Topics in Operating Systems, HOTOS ’01,
2001.

[6] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrah-
manyam, C. A. Waldspurger, D. Boneh, J. Dwoskin,
and D. R. Ports. Overshadow: A virtualization-
based approach to retrofitting protection in com-
modity operating systems. In Proceedings of the
13th International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems, ASPLOS XIII, 2008.

[7] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker,
T. Deegan, P. Loscocco, and A. Warfield. Breaking
Up is Hard to Do: Security and Functionality in a
Commodity Hypervisor. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles,
October 2011.

[8] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI:
Complete Control-Flow Integrity for Commodity
Operating System Kernels. In Proceedings of the
2014 IEEE Symposium on Security and Privacy, SP
’14, 2014.

[9] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve.
Secure Virtual Architecture: A Safe Execution En-
vironment for Commodity Operating Systems. In
Proceedings of Twenty-first ACM SIGOPS Sympo-
sium on Operating Systems Principles, SOSP ’07,
2007.

[10] CVE Database. Common Vulnerabilities and Expo-
sures Database. http://www.cvedetails.com/.

[11] N. Dautenhahn, T. Kasampalis, W. Dietz,
J. Criswell, and V. Adve. Nested Kernel: An Oper-
ating System Architecture for Intra-Kernel Privilege
Separation. In Proceedings of the Twentieth Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS ’15, 2015.

[12] Data Execution Prevention. http://en.
wikipedia.org/wiki/Data_Execution_
Prevention.

[13] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:
Malware Analysis via Hardware Virtualization Ex-
tensions. In Proceedings of the 15th ACM Confer-
ence on Computer and Communications Security,
CCS ’08, 2008.

[14] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and
W. Lee. Virtuoso: Narrowing the Semantic Gap
in Virtual Machine Introspection. In Security and
Privacy (SP), 2011 IEEE Symposium on, 2011.

[15] U. Erlingsson, S. Valley, M. Abadi, M. Vrable,
M. Budiu, and G. C. Necula. XFI: Software Guards
for System Address Spaces. In Proceedings of the
7th USENIX Symposium on Operating Systems De-
sign and Implementation, November 2006.

[16] Y. Fu and Z. Lin. Space Traveling Across VM:
Automatically Bridging the Semantic Gap in Vir-
tual Machine Introspection via Online Kernel Data
Redirection. In Proceedings of the 2012 IEEE Sym-
posium on Security and Privacy, SP ’12, 2012.

[17] T. Garfinkel and M. Rosenblum. A Virtual Machine
Introspection Based Architecture for Intrusion De-
tection. In Proceedings of the 10th Network and
Distributed System Security Symposium, Febuary
2003.

[18] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum.
Enhanced Operating System Security Through Effi-
cient and Fine-grained Address Space Randomiza-
tion. In Proceedings of the 21st USENIX Conference
on Security Symposium, Security’12, 2012.

[19] J. L. Hennessy and D. A. Patterson. Computer AR-
chitecture: a Quantitative Approach. Morgan Kauf-
mann, 2012.

[20] Intel. Intel 64 and IA-32 Architectures Software
Developerś Manual, Feb 2014.

USENIX Association 2015 USENIX Annual Technical Conference 359

[21] X. Jiang and X. Wang. “Out-of-the-Box” Mon-
itoring of VM-based High-interaction Honeypots.
In Proceedings of the 10th International Confer-
ence on Recent Advances in Intrusion Detection,
RAID’07, 2007.

[22] X. Jiang, X. Wang, and D. Xu. Stealthy Malware
Detection Through VMM-based "Out-Of-the-Box"
Semantic View Reconstruction. In Proceedings of
the 14th ACM Conference on Computer and Com-
munications Security, October 2007.

[23] V. P. Kemerlis, G. Portokalidis, and A. D.
Keromytis. kGuard: Lightweight Kernel Protection
Against Return-to-user Attacks. In Proceedings of
the 21st USENIX Conference on Security Sympo-
sium, Security’12, 2012.

[24] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. kvm: the Linux Virtual Machine Mon-
itor. In Proceedings of the 2007 Ottawa Linux Sym-
posium, June 2007.

[25] G. Klein, K. Elphinstone, G. Heiser, J. Andron-
ick, D. Cock, P. Derrin, D. Elkaduwe, K. Engel-
hardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood. seL4: Formal Verification of an
OS Kernel. In Proceedings of the 22nd ACM Sym-
posium on Operating Systems Principles, October
2009.

[26] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz.
SoK: Automated Software Diversity. In Proceed-
ings of the 2014 IEEE Symposium on Security and
Privacy, SP ’14, 2014.

[27] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram.
Defeating Return-Oriented Rootkits with “Return-
less” Kernels. In Proceedings of the 5th ACM
SIGOPS EuroSys Conference, April 2010.

[28] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervi-
sor Support for Identifying Covertly Executing Bi-
naries. In Proceedings of the 17th USENIX Security
Symposium, July 2008.

[29] D. G. Murray, G. Milos, and S. Hand. Improving
Xen Security through Disaggregation. In Proceed-
ings of the 4th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environ-
ments, March 2008.

[30] T. Murray, D. Matichuk, M. Brassil, P. Gammie,
T. Bourke, S. Seefried, C. Lewis, X. Gao, and
G. Klein. seL4: From General Purpose to a Proof of
Information Flow Enforcement. In Proceedings of
the 2013 IEEE Symposium on Security and Privacy,
SP ’13, 2013.

[31] R. Riley, X. Jiang, and D. Xu. Guest-Transparent
Prevention of Kernel Rootkits with VMM-Based
Memory Shadowing. In Proceedings of the 11th
Recent Advances in Intrusion Detection, September
2008.

[32] R. Riley, X. Jiang, and D. Xu. Multi-Aspect Pro-
filing of Kernel Rootkit Behavior. In Proceedings
of the 4th ACM SIGOPS EuroSys Conference, April
2009.

[33] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVi-
sor: a Tiny Hypervisor to Provide Lifetime Kernel
Code Integrity for Commodity OSes. In Proceed-
ings of the 21st ACM ACM Symposium on Operating
Systems Principles, October 2007.

[34] H. Shacham. The Geometry of Innocent Flesh on the
Bone: Return-Into-Libc without Function Calls (on
the x86). In Proceedings of the 14th ACM Confer-
ence on Computer and Communications Security,
October 2007.

[35] M. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure
In-VM Monitoring Using Hardware Virtualization.
In Proceedings of the 16th ACM Conference on
Computer and Communications Security, Novem-
ber 2009.

[36] A. Silberschatz, P. B. Galvin, and G. Gagne. Oper-
ating System Concepts. Wiley, 2012.

[37] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu. Pro-
cess Out-grafting: An Efficient "out-of-VM" Ap-
proach for Fine-grained Process Execution Moni-
toring. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS
’11, 2011.

[38] A. Srivastava and J. Giffin. Efficient Monitoring of
Untrusted Kernel-Mode Execution. In Proceedings
of the 18th Annual Network and Distributed System
Security Symposium, February 2011.

[39] M. M. Swift, B. N. Bershad, and H. M. Levy. Im-
proving the Reliability of Commodity Operating
Systems. In Proceedings of the 19th ACM sym-
posium on Operating Systems Principles, October
2003.

[40] J. Szefer, E. Keller, R. B. Lee, and J. Rexford. Elim-
inating the Hypervisor Attack Surface for a More
Secure Cloud. In Proceedings of the 18th ACM
Conference on Computer and Communications Se-
curity, October 2011.

360 2015 USENIX Annual Technical Conference USENIX Association

[41] Trusted Boot project. Trusted Boot. http://
tboot.sourceforge.net/.

[42] VMware. Performance Evaluation of Intel EPT
Hardware Assist. https://www.vmware.com/
pdf/Perf_ESX_Intel-EPT-eval.pdf.

[43] R. Wahbe, S. Lucco, T. E. Anderson, and S. L.
Graham. Efficient Software-based Fault Isolation.
In Proceedings of the 14th ACM Symposium On
Operating System Principles, December 1993.

[44] Z. Wang and X. Jiang. HyperSafe: A Lightweight
Approach to Provide Lifetime Hypervisor Contr ol-
Flow Integrity. In Proceedings of the 31st IEEE
Symposium on Security and Privacy, May 2010.

[45] Z. Wang, X. Jiang, W. Cui, and P. Ning. Coun-
tering Kernel Rootkits with Lightweight Hook Pro-
tection. In Proceedings of the 16th ACM Confer-
ence on Computer and Communications Security,
November 2009.

[46] Z. Wang, C. Wu, M. Grace, and X. Jiang. Isolating
Commodity Hosted Hypervisors with HyperLock.
In Proceedings of the 7th ACM european conference
on Computer Systems, April 2012.

[47] Wikipedia. DMA Attack. http://en.
wikipedia.org/wiki/DMA_attack.

[48] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Orm, S. Okasaka, N. Narula, N. Fullagar, and
G. Inc. Native Client: A Sandbox for Portable, Un-
trusted x86 Native Code. In Proceedings of the 30th
IEEE Symposium on Security and Privacy, May
2009.

[49] B. Zeng, G. Tan, and U. Erlingsson. Strato: A Retar-
getable Framework for Low-level Inlined-reference
Monitors. In Proceedings of the 22Nd USENIX
Conference on Security, SEC’13, 2013.

[50] B. Zeng, G. Tan, and G. Morrisett. Combining
Control-flow Integrity and Static Analysis for Effi-
cient and Validated Data Sandboxing. In Proceed-
ings of the 18th ACM Conference on Computer and
Communications Security, CCS ’11, 2011.

Notes
1This can be achieved with the return-oriented programming since

SecPod prevents code injection to the kernel.

