
LightBox: Full-stack Protected Stateful Middlebox
at Lightning Speed

Huayi Duan1, Cong Wang1, Xingliang Yuan2, Yajin Zhou34, Qian Wang5, and Kui Ren34
1City University of Hong Kong and City University of Hong Kong Shenzhen Research Institute; 2Monash University;

3College of Computer Science and Technology, School of Cyber Science and Technology, Zhejiang University;
4Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies;

5School of Cyber Science and Engineering, Wuhan University;
hy.duan@my.cityu.edu.hk, congwang@cityu.edu.hk, xingliang.yuan@monash.edu,

yajin_zhou@zju.edu.cn, qianwang@whu.edu.cn, kuiren@zju.edu.cn

ABSTRACT
Running off-site softwaremiddleboxes at third-party service providers
has been a popular practice. However, routing large volumes of
raw traffic, which may carry sensitive information, to a remote
site for processing raises severe security concerns. Prior solutions
often abstract away important factors pertinent to real-world de-
ployment. In particular, they overlook the significance of metadata
protection and stateful processing. Unprotected traffic metadata
like low-level headers, size and count, can be exploited to learn
supposedly encrypted application contents. Meanwhile, tracking
the states of 100,000s of flows concurrently is often indispensable
in production-level middleboxes deployed at real networks.

We present LightBox, the first system that can drive off-site mid-
dleboxes at near-native speed with stateful processing and the most
comprehensive protection to date. Built upon commodity trusted
hardware, Intel SGX, LightBox is the product of our systematic
investigation of how to overcome the inherent limitations of secure
enclaves using domain knowledge and customization. First, we in-
troduce an elegant virtual network interface that allows convenient
access to fully protected packets at line rate without leaving the
enclave, as if from the trusted source network. Second, we provide
complete flow state management for efficient stateful processing,
by tailoring a set of data structures and algorithms optimized for
the highly constrained enclave space. Extensive evaluations demon-
strate that LightBox, with all security benefits, can achieve 10Gbps
packet I/O, and that with case studies on three stateful middleboxes,
it can operate at near-native speed.

CCS CONCEPTS
• Networks → Middle boxes / network appliances; Network
privacy and anonymity; • Security and privacy → Domain-
specific security and privacy architectures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3339814

KEYWORDS
Intel SGX; stateful middleboxes; secure packet processing

ACM Reference Format:
Huayi Duan, Cong Wang, Xingliang Yuan, Yajin Zhou, Qian Wang, and Kui
Ren. 2019. LightBox: Full-stack Protected Stateful Middlebox at Lightning
Speed. In 2019 ACM SIGSAC Conference on Computer & Communications
Security (CCS’19), November 11–15, 2019, London, UK. ACM, NY, NY, USA,
17 pages. https://doi.org/10.1145/3319535.3339814

1 INTRODUCTION
Middleboxes underpin the infrastructure ofmodern networks, where
they undertake critical network functions for performance, con-
nectivity, and security [90]. Recently, a paradigm shift of migrating
software middleboxes (aka virtual network functions) to profes-
sional service providers, e.g., public cloud, is taking place for the
promising security, scalability and management benefits [8, 30, 76].
Its potential to enable a billion-dollar marketplace has already been
widely recognized [21].

According to Zscaler [39], petabytes of traffic are now routed to
its cloud-based security platform for middlebox processing every
single day, and the number is still growing. Along with this seem-
ingly unstoppable momentum comes an unprecedented security
concern: how can end users be assured that their private informa-
tion buried in the huge volumes of traffic, is not unauthorizedly
leaked while being processed by the service provider (Fig. 1)? We
are witnessing increasing and diversifying data breaches by service
providers nowadays [53], yet embarrassingly we are also facing a
daunting situation where full-scale traffic inspection seems manda-
tory to thwart stealthy threats [40]. In light of this, a reassuring
solution should be capable of protecting sensitive traffic while re-
taining necessary middlebox functionality.

Over the past few years, a number of approaches have been pro-
posed to address the problem above, and they can be categorized
into two broadly defined classes: software-centric and hardware-
assisted. The first line of solutions [3, 10, 26, 51, 77, 99] often rely
on tailored cryptographic schemes. They are advantageous in pro-
viding provable security without hardware assumption, but often
limited in functionality and sometimes in performance. The sec-
ond line of solutions move middleboxes into a trusted execution
environment, mostly Intel SGX enclave [56]. Hardware-assisted
designs provide generally better functionality and performance
than software-centric approaches. In this regard, efforts with par-
ticular focus on the modular design and programmability of secure

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2351

https://doi.org/10.1145/3319535.3339814

Logical connection

Enterprise Network

Real traffic flow

Figure 1: Large volumes of traffic are redirected to service
providers for middlebox processing, creating a unique van-
tage point for adversaries to learn sensitive information.

middleboxes [18, 35, 66, 86], deployment consideration [61], and
code protection [66] have been actively made.

Aswith these designs, we prioritize the consideration of handling
the intrinsic complexity and stringent performance requirements
of middleboxes, and leverage the SGX enclave as a starting point to
develop a secure middlebox system. We observe that while previous
solutions have claimed the benefits and practicality of SGX-enabled
design, they largely overlooked several key factors that are highly
pertinent to the real-world deployment of off-site middleboxes. We
have identified two important aspects and provided encouraging
results, which we hope will lead the secure middlebox-as-a-service
to the practical realm and stimulate its massive adoption.

1.1 Motivation
Necessity for metadata protection. Most existing designs only
consider the protection of application payloads while redirecting
traffic to remote middleboxes. Few of them protect traffic metadata,
including low-level packet headers, packet size, count and timestamps.
Such metadata is information-rich and highly exploitable. The im-
portance of hiding communication metadata (e.g., IP addresses) has
been reiterated in recent years [88, 89]. In the often cited example
of Snowden Leaks, it is frustratedly put as “if you have enough
metadata, you don’t really need content” [70].

By just exploiting the seemingly innocent packet size, count and
timing, a variety of sophisticated traffic analysis attacks have been
demonstrated: they can extract supposedly encrypted application
contents such as website objects [91], VoIP conversations [96],
streaming videos [68], instantmessages [19], and user activities [16],
by analyzing the distributions of metadata.

Such metadata may be obtained by an adversary who can sniff
traffic anywhere on the transmission path. In fact, aggregating
tremendous user traffic to the middlebox service provider creates a
unique vantage point for traffic analysis, because of the much en-
larged datasets for correlating information and statistical inference.
We should thus protect not only application payloads but all afore-
mentioned traffic metadata — what we dub full-stack protection.
Necessity for statefulmiddlebox. In contrast to L2 switches and
L3 routers that process each packet independently, advancedmiddle-
boxes need to track various flow-level states to implement complex

Table 1: Functionality and security characterization of rep-
resentative solutions for secure middleboxes.

Function Protection
Field Op. Stateful Meta HDR P/L Rule State

Software-centric
BlindBox [77] P PM ✗ ✗ ✗ ✓ ✓ N/A
YWLW16 [99] P PM ✗ ✗ ✗ ✓ ✓ N/A
SplitBox [3] H+P RM ✗ ✗ ✓ ✓ ✓ N/A
BlindIDS [10] P PM ✗ ✗ ✗ ✓ ✓ N/A
SPABox [26] P REX ✗ ✗ ✗ ✓ ✓ N/A
Embark [51] H+P RM ✓∗ ✗ ✓ ✓ ✓ ✓∗

Hardware-assisted
S-NFV [78] N/A N/A N/A ✗ ✗ ✗ ✗ ✓

TrustedClick [18] H+P GN ✗ ✗ ✗ ✓ ✓ N/A
SGX-BOX [35] P GN ✓ ✗ ✗ ✓ ✓ ✗

mbTLS [61] P GN N/S ✗ ✗ ✓ ✓ N/S
ShieldBox [86] H+P GN ✗ ✗ ✗ ✓ ✓ N/A
SafeBrick [66] H+P GN ✓∗ ✗ ✓ ✓ ✓ ✓∗

LightBox H+P GN ✓ ✓ ✓ ✓ ✓ ✓

Notations
- Field: which fields are processed, H (L2-L4 headers) and/or P (L4 payload).
- Op. (operation): PM (exact string pattern matching) ⊂ RM (range matching)

⊂ REX (regular expression matching) ⊂ GN (generic functions).
- Stateful: whether generic flow-level stateful processing is supported.
- Meta: packet size, count and timestamp.
- HDR: L2-L4 headers, e.g., ip address, port number, and TCP/IP flags.
- P/L: L4 payload, including all application content.
- Rule: middlebox processing rules, e.g., attacking signatures.
- State: flow-level states, e.g., connection status, statistics and stream buffers.
- N/A: the feature is not considered by design.
- N/S: the feature may be potentially supported, but not explicitly described.
∗ : Embarks considers an ad hoc web proxy, but not generic stateful processing.
∗ : SafeBrick considers a simple stateful firewall only.

functionality [45]. For example, intrusion detection systems typi-
cally keep per-flow stream buffers to eradicate cross-packet attack
patterns [44, 81]; proxies and load balancers maintain front/back-
end connection states and packet pools to ensure end-to-end con-
nectivity [65, 67]. Thus, supporting stateful processing is an essen-
tial functionality requirement in realistic middlebox products.

However, even with the power of trusted hardware, it is techni-
cally challenging to develop a secure yet efficient solution due to the
unique features of stateful middleboxes. In particular, the per-flow
states range from a few hundreds of bytes [47] to multiple kilo-
bytes [45], and they need to stay tracked throughout the lifetime of
flows or some expiration period. Moreover, it is not uncommon for
production-level middleboxes to handle hundreds of thousands (or
even more) of flows concurrently in real networks [20, 24, 44, 45].
The resulting gigabytes of runtime memory footprint are not easily
manageable by any secure enclaves. Meanwhile, modern middle-
boxes feature packet processing delay within a few tens of microsec-
onds [44, 54, 64] — a performance baseline that should be respected
even if strong security guarantees are favored.
Characterization of prior arts. We summarize existing solutions
and compile their functionality and security features in Table 1.
We define “metadata” as the L2-L4 headers, packet size, count and
timestamps. For better characterization, we separately label the
headers as “HDR”, and the latter three as “Meta”. Some solutions [61,
77, 78] do not target the outsourcing scenario and have different
security goals, but we include them anyway for completeness.

Regarding security, none of the existing systems considers full-
stack protection. The closest to us are Embark [51], which applies
deterministic encryption to each packet, and SafeBricks [66], which
uses L2 secure tunneling to forward packets to the enclave. Both of
them encrypt packets individually and thus may be vulnerable to
traffic analysis attacks exploiting packet size and count.

Regarding stateful processing, SGX-BOX [35] allows inspec-
tion on traffic streams that are reassembled outside enclave, and
SafeBricks implements a simple stateful firewall for testing. But
none of them considers the high flow concurrency exhibited in real
networks and the challenges therein. Embark supports an ad hoc
web proxy that caches static HTTP contents, but it cannot support
generic stateful functions with arbitrary operations over flow state.
We defer more discussions on related work to Section 7.

Note that we do recognize the meaningful explorations and
contributions made by these prior arts with different focuses. We
believe that our efforts will make it more convincing and confident
to deploy and operate secure middleboxes in practical settings.

1.2 Our Contribution
We design and build LightBox, the first SGX-enabled secure mid-
dlebox system that can drive off-site middleboxes at near-native
speed with stateful processing and full-stack protection. By system-
atically tackling many well-known limitations of SGX, from the
lack of system services including network I/O, trusted timing and
synchronization, to the unacceptable overhead of secure memory
oversubscription, we have provided affirmative and satisfactory
answers to the following two major research questions.

1. How to securely forward raw packets to a remote enclave, without
leaking their low-level metadata, while still making them conveniently
accessible at line rate?

In pursuit of this goal and in reminiscent of the classic kernel-
driven tun/tap tunnel devices, we have developed a virtual net-
work interface (VIF) called etap (“enclave tap”). It allows access to
packets without leaving the enclave, as if from the source network
where the packets originate. For full packet protection, our design
guarantees that the raw packets with L2-L4 headers are entirely
delivered via a secure tunnel (e.g., TLS) terminated at a trusted
enterprise gateway and the enclave. To frustrate traffic analysis,
we pack the raw packets in a back-to-back manner and transmit
them as continuous application payloads. As a result, the packet
boundaries are obscured in the encrypted stream, so are the packet
size and count. As a by-product of etap, we create a trusted clock
for high-resolution and reliable timing inside the enclave.

We show how to progressively optimize the performance of etap
with lock-free rings, cache line protection, and disciplined batching,
so that it can catch up with the rate of physical network interfaces.

We also endeavor to improve the usability of etap, by further
porting three networking frameworks on top of it: 1) an adaption
layer of libpcap [33], 2) a lightweight TCP stream reassembly
library [28], and 3) an advanced flow monitoring stack mOS [45].
These system efforts allow us to port or develop middleboxes that
enjoy the security and performance benefits of etap, with little
code modification. For example, a developer can write a middlebox
in the mOS framework as usual, and then automatically turn it into
a LightBox instance even without the knowledge of SGX.

2. How to enable the resource-demanding stateful middlebox pro-
cessing within the highly constrained enclave space, without incurring
unreasonably high overhead?

As mentioned before, stateful middleboxes in realistic settings
have a large memory demand, which is at odds with the limited
enclave memory supply. The naive paging approach for oversub-
scribing enclave memory incurs substantial overhead [2], which
is intolerable to middleboxes as confirmed by our experiments. To
reduce the enclave footprint, we propose to maintain only a small
working set of states in the enclave, while keeping the vast remain-
der of them encrypted in untrusted memory, at the granularity of
flow. While this general idea may seem natural at first sight, we
show that the performance bottleneck can only be surmounted
with carefully crafted data structures and algorithms.

Specifically, given the limited enclave resources, the data struc-
tures used to hold flow states must be very compact, and support
efficient lookup, relocation, swapping and deletion of data items.
To meet these requirements, we design a set of interlinked data
structures. They separate the indexing and storage of flow states,
enabling flexible lookup strategy. They also allow fast relocation of
states inside enclave and swapping of states across enclave bound-
ary, with very cheap pointer operations. Furthermore, after identi-
fying the lookup procedure as the main roadblock on the critical
path, we opt to the space-efficient cuckoo hashing for indexing
flow states, and introduce a cache-friendly lookup algorithm to
counteract the cache inefficiency of hashing-based scheme.

Efficiency aside, our design ensures the confidentiality, integrity,
and freshness of the states throughout the management procedures.
Experiment. Extensive evaluations show that with our optimized
designs, etap allows in-enclave packet I/O at 10Gpbs rate with
full-stack protection. We instantiate LightBox for three stateful
middleboxes, which are arguably more complicated than any of
those tested by prior arts, and evaluate each of them against the
native version and a strawman variant solely relying on EPC pag-
ing. LightBox incurs negligible packet delay inflation to the native
processing for the two middleboxes with 0.5KB and 5.5KB per-
flow state, and moderate delay to the most complicated middlebox
with 11.4KB per-flow state. It maintains constant performance and
achieves multi-factor speedup over the strawman when tracking
100, 000s of flows. The performance gap is widened as more flows
are tracked and more severe paging penalty is imposed on the latter.
Last but not the least, LightBox can achieve native speed on a real
CAIDA trace for two of the three middleboxes under testing, and
2× speedup over the strawman for the other unoptimized one.
Lessons learned. From our experience in designing, building
and evaluating LightBox, we have indeed challenged the common
perception that one can run applications in secure enclaves, SGX
in particular, at native speed almost without technical efforts but
mundane code porting. Our results unveil that for realistic work-
loads that are security-critical and performance-sensitive, domain-
specific design and optimization become a must to bypass the intri-
cacies of secure enclaves. We hope to raise practitioners’ awareness
that, as a particular lesson, the proper use of memory-efficient
and cache-friendly data structures and algorithms will make a big
difference to the performance of those enclave applications.

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2353

Untrusted Host
Enclave

State management

etap

Gateway

et
ap

-c
li

Traffic

Packet I/O

Stateful
processing

Middlebox

LightBox module

Lookup table

Flow state

Network packets

Encrypted
data stream

Figure 2: Overview of LightBox components.

2 OVERVIEW
2.1 Service Model
In a realistic service model, the enterprise redirects its traffic to
the off-site middlebox hosted by the service provider for process-
ing [41]. We assume that the middlebox code is not necessarily
private and may be known to the service provider. This matches
practical use cases where the source code is free to use, but only
bespoke rule sets [82] are proprietary.We also consider a single mid-
dlebox. These simplifications allow us to concentrate on presenting
the core designs of LightBox. Nonetheless, we stress that LightBox
can be readily adapted to support service function chaining [83] and
disjoint service providers [66], which mostly involves only changes
to the service launching phase. We postpone the discussions of
other service models to Appendix B.
Traffic forwarding. For ease of exposition, we consider the bounce
model with one gateway [51, 76]: both inbound and outbound traffic
is redirected from an enterprise gateway to the remote middlebox
for processing and then bounced back. The other direct model,
where traffic is routed from the source network to the remote mid-
dlebox and then directly to the next trusted hop, i.e., the gateway in
the destination network [66], can be trivially supported by installing
one etap-cli (see Section 2.3) on each gateway.

The communication endpoints themselves (e.g., a client in the
enterprise network and an external server) may transmit data via
a secure connection. To enable such already encrypted traffic to
be processed by the middlebox, the gateway needs to intercept the
secure connection and decrypt the traffic before redirection. We
follow the common practice [35, 61, 66] to handle this issue. In par-
ticular, the gateway will receive the session keys from the endpoints
to perform the interception, unbeknownst to the middlebox.

A dedicated high-speed connection will be typically established
for traffic redirection [76]. Such services have been widely pro-
visioned nowadays, for example AWS Direct Connect [5], Azure
ExpressRoute [6], and Google Dedicated Interconnect [31]. The off-
site middlebox, while being secured, should also be able to process
packet at line rate to benefit from such dedicated links.

2.2 SGX Background
SGX introduces a trusted execution environment called enclave to
shield code and data with on-chip security engines. It stands out

for the capability to run generic code at processor speed, with prac-
tically strong protection. Despite the benefits, it has several limita-
tions. First, common system services cannot be directly used inside
the enclave. Access to them requires expensive context switching
to exit the enclave, typically via a secure API called OCALL. Second,
memory access in the enclave incurs performance overhead. The
protected memory region used by the enclave is called Enclave Page
Cache (EPC). It has a conservative limit of 128MB in current prod-
uct lines. Excessive memory usage in the enclave will trigger EPC
paging, which can induce prohibitive performance penalties [2].
Besides, the cost of cache miss while accessing EPC is higher than
normal, due to the cryptographic operations involved during data
transferring between CPU cache and EPC. While such overhead
may be negligible to certain applications, it becomes crucial to
middleboxes with stringent performance requirements.

2.3 LightBox Overview
LightBox components. LightBox leverages an SGX enclave to
shield the off-site middlebox. As shown in Fig. 2, a LightBox in-
stance comprises two modules in addition to the middlebox itself:
a virtual network interface etap and a state management module.
The former is semantically equivalent to a physical network inter-
face card (NIC), allowing packets I/O at line rate within the enclave.
The latter provides automatic and efficient memory management
of the large amount of flow states tracked by the middlebox.

The etap device is peered with one etap-cli program installed
at the enterprise gateway. We establish a persistent secure channel
between the two to tunnel the raw traffic, which is transparently
encoded/decoded and encrypted/decrypted by etap. The middlebox
and upper networking layers can directly access raw packets via
etap without leaving the enclave.

The state management module maintains a small flow cache in
the enclave, a large encrypted flow store in the untrusted memory,
and an efficient lookup data structure in the enclave. The middlebox
can lookup or remove state entries by providing flow identifiers. In
case a state is not present in the cache but in the store, the module
will automatically swap it with a cached entry.
Secure service launching. The enterprise needs to attest the
integrity of the remotely deployed LightBox instance before launch-
ing the service. This is realized by the standard SGX attestation
utility [1]. Specifically, the enterprise administrator can request
a security measurement of the enclave signed by the CPU, and
interact with Intel’s IAS API for verification. During attestation, a
secure channel is established to pass configurations, e.g., middlebox
processing rules, etap ring size and flow cache size, to the LightBox
instance. Due to the space limit, we skip the verbose description
here. We remark that for the considered service scenario where
only two parties (the enterprise and the server provider) are in-
volved, a basic attestation protocol between the two and Intel IAS
is sufficient.

2.4 Adversary Model
In line with SGX’s security guarantee, we consider a powerful ad-
versary. We assume that the adversary can gain full control over all
user programs, OS and hypervisor, as well as all hardware compo-
nents in the machine, with the exception of processor package and

on the fly

7 5 6 4 2

9 9 9 9 9

7 5 6 4 2 9

Tunneling headers

Original headers

n Packet with size n

Encrypted data

LegendNo protection

L2 per-packet
encryption

with padding

Our stream-based
tunneling design 9 9

Figure 3: Illustration of secure tunneling options.

memory bus. It can obtain a complete memory trace for any process,
except those running in the enclave. It is also capable of observing
network communications, modifying and dropping packets at will.
In particular, the adversary can log all network traffic and conduct
sophisticated inference to mine useful information. Our goal here
is to thwart practical traffic analysis attacks targeting the original
packets that are intended for processing at the off-site middleboxes.

Like many SGX applications [2, 37, 59, 63, 72], we consider side-
channel attacks [32, 60, 79, 94, 98] out of scope. They can be orthogo-
nally handled by corresponding countermeasures [13, 17, 34, 74, 79].
That said, we fully recognize the security benefits and limitations
of SGX, and understand that they are still under rapid iteration [93].
It is yet by far, arguably, the most practical solution for a wide class
of complicated tasks including secure middleboxes.

We do not deal with denial-of-service attacks. The middlebox
code is assumed to be correct. Also, we assume that the enterprise
gateway is always trusted and it does not have to be SGX-enabled.

3 THE ETAP DEVICE
The ultimate goal of etap is to enable in-enclave access to the
packets intended for middlebox processing, as if they were locally
accessed from the trusted enterprise networks. Towards this goal, we
set forth the following design requirements.

• Full-stack protection: when the packets are transmitted in
the untrusted networks, and when they traverse through
the untrusted platform of the service provider, none of their
metadata as defined in Section 1 is directly leaked.

• Line-rate packet I/O: etaps should deliver packets at a rate
that can catch up with a physical network interface card
(NIC), without capping the middlebox performance. A prag-
matic performance target to shoot is 10Gbps.

• High usability: to use etap, we need to impose as few changes
as possible to the secured middlebox. This implies that if
certain network frameworks are used by the middlebox, they
should be seamlessly usable inside the enclave too.

3.1 Overview
To achieve full-stack protection, an intuitive idea would be to se-
curely tunnel the packets between the gateway and the enclave: the
original packets are encapsulated and encrypted as the payloads of
new packets, which contain non-sensitive header information (i.e.,
the IP addresses of the gateway and the middlebox server).

The naive way of encapsulating and encrypting packets individ-
ually, as used in L2 tunneling solution like IPSec, does not suffice
for our purpose — it does not protect information pertaining to
individual packets, including size, timestamp, and as a result, packet
count. Padding each packet to the maximum size may hide exact

Enclave

Core	
driver

Poll	
driver

RX	
ring

TX	
ring

record	
buffer

record	
buffer

batch buffer

batch buffer

et
ap
-c
lie
nt

OCALL
etap
clock

Figure 4: The architecture of etap.

packet size, but it incurs unnecessary bandwidth inflation, and still
cannot hide the count and timestamps.

We thus consider encoding the packets as a continuous stream,
which is treated as application payloads and transmitted via a se-
cure channel (e.g., TLS). Such streaming design obfuscates packet
boundaries, thus hiding the metadata we want to protect, as illus-
trated in Fig. 3. From a system perspective, the key to this approach
is the VIF tun/tap1 that can be used as an ordinary NIC to access
the tunneled packets, as widely adopted by popular products like
OpenVPN. While there are many userspace TLS suites and some
of them even have handy SGX ports [4, 97, 100], the tun/tap de-
vice itself is canonically driven by the untrusted OS kernel. That is,
even if we can terminate the secure channel inside the enclave, the
packets are still exposed when accessed via the untrusted tun/tap
interface.

This inspires us to develop etap (the “enclave tap”), which man-
ages packets inside the enclave and enables direct access to them
without exiting. The naming comes from the convention that tap is
for L2 packets (more precisely, frames) while tun is for L3 packets,
and we aim to protect the L2 header as well. From the middlebox’s
point of view, accessing packets in the enclave via etap is identical
to accessing them via a real NIC in the local enterprise networks.

3.2 Architecture
The major components of etap are depicted in Fig. 4. Every etap
is peered with an etap-cli run by the gateway. The two share the
same processing logic and since etap-cli operates as a normal
program in the trusted gateway, we ignore a detailed description
for it. A persistent connection will be established between the two
for secure traffic tunneling. The etap peers will maintain a minimal
traffic rate by injecting heartbeat packets to the tunnel.

At the heart of etap are two rings for queuing packet data: one
for transmitting (TX) and the other for receiving (RX). A packet is
described by a pkt_info structure, which stores in order the packet
size, timestamp, and a buffer for raw packet data. Two additional
data structures are used in preparing and parsing packets: a record
buffer holds decrypted data and some auxiliary fields inside the
enclave; a batch buffer stores multiple records outside the enclave.

The etap device is powered by two drivers. The core driver
coordinates networking, encoding and cryptographic operations;
it also maintains a trusted clock to overcome the lack of high-
resolution timing inside the enclave. The poll driver is used by
middleboxes to access packets. The two drivers source and sink the

1https://www.kernel.org/doc/Documentation/networking/tuntap.txt

Algorithm 1: etap core driver’s RX ring loop
1 ocall_fill_rx_bat_buf();
2 check_memory_safety(rx_bat_buf);
3 foreach enc_rec in rx_bat_buf do
4 rec_buf = decrypt(enc_rec);
5 finish_pending_partial_pkt(rec_buf);
6 while has_full_pkt(rec_buf) do
7 pkt_info = parse_next(rec_buf);
8 push_to_rx_etap_ring(pkt_info);
9 refresh_pending_partial_pkt(rec_buf)

two rings accordingly. We discuss the support of multiple RX rings
for multi-threaded middleboxes in Appendix A.
Remark. The design of etap is agnostic to how the real net-
working outside the enclave is performed. For example, it can use
standard kernel networking stack (this is currently used by us).
For better efficiency, it can also use faster userspace networking
frameworks based on DPDK [42] or netmap [69], as shown in Fig.6.

3.3 Drivers
Core driver. Upon initialization, the core driver takes care of nec-
essary handshakes (via OCALL) for establishing the secure channel
and stores the session keys inside the enclave. The packets intended
for processing are pushed into the established secure connection in
a back-to-back manner, forming a data stream at the application
layer. At the transportation layer they are effectively organized
into contiguous records (e.g., TLS records) of fixed size (e.g., 16KB
for TLS), which then at the network layer are broken down into
packets of maximum size. Each original packet is transmitted in the
exact format of pkt_info, so the receiver will be able to recover
from the continuous stream the original packet by first extracting
its length, the timestamp, and then the raw packet data. The core
driver is run by its own thread. The pseudo code in Alg. 1 outlines
the the main RX loop. The TX side is similar and omitted here.
Trusted timing with etap clock. Middleboxes often demand
reliable timing for packet timestamping, event scheduling, and
performance monitoring. The timer should at least cope with the
packet processing rate, i.e., at tens of microseconds. The SGX plat-
form provides trusted relative time source [12], but its resolution is
too low (at seconds) for our use case. Alternative approaches resort
to system time provided by OS [66] and on-NIC PTP clock [86].
Yet, they both access time from untrusted sources, thus subject
to adversarial manipulation. Another system [101] fetches time
from a remote trusted website, and its resolution (at hundreds of
milliseconds) is still unsatisfactory for middlebox systems.

We design a reliable clock by taking etap’s architectural advan-
tage. In particular, we treat etap-cli as a trusted time source to
attach timestamps to the forwarded packets. The core driver can
then maintain a clock (with proper offset) by updating it with the
timetamp of each received packet. The resolution of the clock is
determined by the packet rate, which in turn bounds the packet
processing rate of the middlebox itself. Therefore, the clock should
be sufficient for most timing tasks found in middleboxes. Further-
more, we collate the clock periodically with the round-trip delay

0.08 0.15 0.34 0.65 1.18

4.5
5.7

7.2 7.8 8.4

0

2

4

6

8

10

64 128 256 512 1024

Th
ro
ug
hp

ut
	(G

bp
s)

Packet	size	(Byte)

lock
trylock
lock-free

Figure 5: Performance of etap by applying three different
synchronization mechanisms, without other optimizations
suggested in Section 3.5.

estimated by the moderately low-frequency heartbeat packets sent
from etap-cli, in a way similar to the NTP protocol [58]. Besides
accuracy, such heartbeat packets additionally ensure that any ad-
versarial delaying of packets, if it exceeds the collation period, will
be detected when the packets are received by etap. We stress that it
is still an open problem to provide trusted and high-resolution time
for SGX applications [12, 13]. The proposed etap clock fits well for
middlebox processing in our targeted high-speed networks.
Poll driver. The poll driver provides access to etap for upper
layers. It supplies two basic operations, read_pkt to pop packets
from RX ring, and write_pkt to push packets to TX ring. Unlike
the core driver, the poll driver is run by the middlebox thread. It
has two operation modes. In the default blocking mode, a packet is
guaranteed to be read from or write to etap: in case the RX (resp.
TX) ring is empty (resp. full), the poll driver will spin until the ring
is ready. In the non-blocking mode, the driver returns immediately
if the rings are not ready. This will allow the middlebox more CPU
time for other tasks, e.g., processing cached events.

3.4 Security Analysis
The protection of application payloads in the traffic is obvious. We
focus on the analysis of metadata. Also we discuss passive adversary
only, because the active ones who attempt to modify any data will
be detected by the employed authenticated encryption.
Metadata protection. Imagine an adversary located at the ingress
point of the service provider’s network, or one that has gained full
privilege in the middlebox server. She can sniff the entire tunneling
traffic trace between the etap peers. As illustrated in Fig. 3, however,
the adversary is not able to infer the packet boundaries from the
encrypted stream embodied as the encrypted payloads of observable
packets, which have the maximum size most of the time. Therefore,
she cannot learn the low-level headers, size and timestamps of the
encapsulated individual packets in transmission. This also implies
her inability to obtain the exact packet count, though this number
is always bounded in a given period of time by the maximum and
minimum possible packet size. Besides, the timestamp attached to
the packets delivered by etap comes from the trusted clock, so it is
invisible to the adversary.

As a result, a wide range of traffic analyses [16, 19, 68, 91, 96]
that directly leverage the metadata will be thwarted, as no such
information is available to the adversary.

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2356

Beyond metadata. Despite the aforementioned protection over
metadata, we do not claim that our design defeats all possible infer-
ence attacks. For example, from the bursts in traffic the adversary
may potentially learn the launching and termination of certain
applications. It is also shown that some delicate analysis can glean
meaningful information by looking at the total traffic volume and
bursts [23]. A generic countermeasure would be to obfuscate ex-
ploitable traffic patterns by injecting calibrated noise [92]. We note
that in-depth traffic analysis and mitigation is still a highly active
research area [15, 38, 80]. In the context of middlebox outsourcing
where an adversary may gain more visibility into the aggregated
network traffic, our design can significantly raise the bar for realistic
traffic analysis attacks.

3.5 Performance Boosting
While ensuring strong protection, etap is hardly useful if it cannot
deliver packets at a practical rate. We therefore synergize several
techniques to boost its performance.
Lock-free ring. The packet rings need to be synchronized between
the two drivers of etap. We compare the performance of three
approaches: a basic mutex (sgx_thread_mutex_lock), a spinlock
without context switching (sgx_thread_mutex_trylock), and a
classic single-producer-single-consumer lockless algorithm [50].
Our evaluation shows that the trusted synchronization primitives
of SGX are too expensive for the use of etap (see Fig. 5), so we base
further optimizations on the lock-free design.
Cache-friendly ring access. In the lock-free design, frequent
updates on control variables will trigger a high cache miss rate, the
penalty of which is amplified in the enclave. We adapt the cache-
line protection technique [52] to our design to relieve this issue. It
works by adding a set of new control variables local to the threads
to reduce the contention on shared variables. Our evaluations show
that this optimization results in a performance gain up to 31%.
Disciplined record batching. Recall that the core driver uses
bat_buf to buffer the records. The buffer size has to be properly set
for best performance. If too small, the overhead of OCALL cannot
be well amortized. If too large, the core driver needs longer time
to perform I/O: this would waste CPU time not only for the core
driver that waits for I/O outside the enclave, but also for a fast
poll driver that can easily drain or fill the ring. Through extensive
experiments, we find a batch size around 10 to be a sweet spot that
can deliver practically the best performance for different packet
sizes in our settings (see Fig. 10).

3.6 Usability
A main thrust of etap is to provide convenient networking func-
tions to in-enclave middleboxes, preferably without changing their
legacy interfaces. On top of etap, we can port existing frameworks
and build new ones. Here, we report our porting efforts of three of
them, which greatly improve the usability of etap.
Compatibility with libpcap. Considering libpcap is widely
used in networking frameworks and middleboxes for packet cap-
turing [27, 49, 69, 81], we create an adaption layer that implements
libpcap interfaces over etap, including the commonly used packet
reading routines (e.g., pcap_loop, pcap_next), and filter routines

etap

Kernel/DPDK/Netmap

Physical NIC
Untrusted networking

libpcap adaption layer

PRADS lwIDS mIDS

mOSlibntoh
Trusted networking

Secured middleboxes

En
cl

av
e

H
os

t

Figure 6: The networking stack enabled by etap.

(e.g., pcap_compile). This layer allows many legacy systems, in-
cluding the ones discussed in Section 5, to transparently access
protected raw packets inside the enclave.
TCP reassembly. This common function organizes the payloads
of possibly out-of-order packets into streams for subsequent pro-
cessing. To facilitate middleboxes demanding such functionality, we
port a lightweight reassembly library libntoh [28] on top of etap.
It exposes a set of APIs to create stream buffers for new flows, add
new TCP segments, and flush the buffers with callback functions.
It is used in one of our middlebox case-studies.
Advanced networking stack. We also manage to port an ad-
vanced networking stack called mOS, which allows for program-
ming stateful flow monitoring middleboxes [45], into the enclave
on top of etap. As a result, a middlebox built with mOS can au-
tomatically enjoy all security and performance benefits of etap,
without the need for the middlebox developer to even have any
knowledge of SGX. The porting is a non-trivial task as mOS has
complicated TCP context and event handling, as well as more so-
phisticated payload reassembly logic than libntoh. Our current
porting retains the core processing logic of mOS and only removes
the threading features.

Note that the two stateful frameworks above track flow states
themselves, so running them inside the enclave efficiently requires
delicate state management, as described in the next section.

4 FLOW STATE MANAGEMENT
To get rid of the expensive application-agnostic EPC paging, a
natural idea would be to carefully partition the working set of
an SGX application into two parts, a small one that can fit in the
enclave, and a large one that can securely reside in the untrusted
main memory, while ensuring data swapping between the two in
an on-demand manner. A related idea has been positively validated
in a prior study [63]. But it still falls within the paradigm of paging,
and reports a slowdown over native processing of several factors,
even for moderate working sets of a few hundreds of MBs.

To effectively implement the idea above, we design a set of novel
data structures specifically for managing flow states in stateful
middleboxes. They are compact, such that collectively adding a few
tens of MBs overhead to track one million flows concurrently. They
are also interlinked, such that the data relocation and swapping
involves only cheap pointer operations in addition to necessary
data marshalling. To overcome the bottleneck of flow lookup, we
further leverage the space-efficient cuckoo hashing to create a fast
dual lookup algorithm. Altogether, our state management scheme

lkup_entry*lkup;
cache_entry*prev;
cache_entry*next;
bytes plain_state;

fid_type fid;
int swap_counter;
time last_access;
cache_entry*data;

fid_type fid;
int swap_counter;
time last_access;
store_entry*data;

bytes enc_state;
bytes mac;

flow_cache lkup_table flow_store

Enclave

Figure 7: Data structures used in flow state management.

introduces small and nearly constant computation cost to stateful
middlebox processing, even with 100,000s of concurrent flows.

Note that we focus on flow-level states, which are the major
culprits that overwhelm memory. Other runtime states, such as
global counters and pattern matching engines, do not grow with
the number of flows, so we leave them in the enclave and handled
by EPC paging whenever necessary. Our experiments confirm that
the memory explosion caused by flow states is the main source of
performance overhead.

4.1 Data Structures
The state management is centered around three abstract tables:

• flow_cache, which maintains the states of a fixed number
of active flows in the enclave;

• flow_store, which keeps the encrypted states of inactive
flows in the untrusted memory;

• lkup_table, which allows fast lookup of all flow states from
within the enclave.

Among them, flow_cache has a fixed capacity, while flow_store
and lkup_table can grow as more flows are tracked. Our de-
sign principle is to keep the data structures of flow_cache and
lkup_table functional and minimal, so that they can scale to mil-
lions of concurrent flows. Figure 7 gives an illustration of them.

• The cache_entry holds raw state data. It keeps two pointers
(dotted arrows) to implement the Least Recently Used (LRU)
eviction policy, and links (dashed arrow) to a lkup_entry.

• The store_entry holds encrypted state data and authenti-
cation MAC. It is maintained in untrusted memory so does
not consume enclave resources.

• The lkup_entry stores fid, a pointer (solid arrow) to either
cache_entry or store_entry, and two small fields. The fid
represents the conventional 5-tuple to identify flows. The
swap_count serves as a monotonic counter to ensure the
freshness of state; it is initialized to a random value and
incremented by 1 on each encryption. The last_access as-
sists flow expiration checking, it is updated with etap clock
on each flow tracking. Note that the design of lkup_entry
is independent of the underlying lookup structure, which
for example can be plain arrays, search trees or hash tables.

The data structures above are succinct, making it efficient to
handle high flow concurrency. Assume 8B (byte) pointer and 13B
fid, then cache_entry uses 24B per cached flow and lkup_entry
uses 33B per tracked flow. Assume 16K cache entries and full uti-
lization of the underlying lookup structure, then tracking 1M flows
requires only 33.8MB enclave memory besides the state data itself.

Algorithm 2: Fast flow tracking with dual lookup
Input: A fid extracted from input packet.
Output: The state of flow fid.

1 entry = flow_cache_cuckoo_lkup(fid);
2 if entry empty then // flow_cache miss
3 entry = flow_store_cuckoo_lkup(fid);
4 if entry empty then // flow_store miss

entry = flow_store_alloc();
5 check_memory_safety(entry);
6 victim = drop_from_rear(flow_cache);
7 victim = encrypt(victim);
8 swap(entry.state, victim.state);
9 entry = decrypt(entry);

10 raise_to_front(entry, flow_cache);
11 Return entry.state;

4.2 Management Procedures
We refer to flow tracking as the process of finding the correct flow
state on a given fid. It takes place in the early stage of the packet
processing cycle. The identified state may be accessed anywhere
and anytime afterwards [46, 47]. Thus, it should be pinned in the
enclave immediately after flow tracking to avoid being accidentally
paged out. The full flow tracking procedure is described in Alg. 2.
Initialization. For efficiency, we preallocate entries for all three
components. During initialization, a random key is generated and
stored inside the enclave for the required authenticated encryption.
Flow tracking. Given a fid, we first search through lkup_table
to check if the flow has been tracked. If it is found in flow_cache,
we will relocate it to the front of the cache by updating its log-
ical position via the pointers, and return the raw state data. If
it is found in flow_store, we will swap it with the LRU victim
in flow_cache. In case of a new flow, an empty store_entry is
created for the swapping. The entry swapping involves a series
of strictly defined operations: 1) Checking memory safety of the
candidate store_entry; 2) Encrypting the victim cache_entry; 3)
Decrypting the store_entry to the just freed flow_cache cell; 4)
Restoring the lookup consistency in the lkup_entry; 5) Moving
the encrypted victim cache_entry to store_entry. At the end of
flow tracking, the expected flow state will be cached in the enclave
and returned to the middlebox.
Tracking termination. The tracking of a flow can be explicitly
terminated (e.g., upon seeing FIN or RST flag). When this happens,
the corresponding lkup_entry is removed and the cache_entry
is nullified. This will not affect flow_store, as the flow has already
been cached in the enclave.
Expiration checking. We periodically purge expired flow states
to avoid performance degradation. The last access time field will be
updated at the end of flow tracking for each packet using the etap
clock. The checking routine will walk through the lookup_table
and remove inactive entries in the tables.

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2358

4.3 Fast Flow Lookup
The fastest path in the flow tracking process above is indicated
by flow_cache hit, where only a few pointers are updated to re-
fresh LRU linkage. In case of flow_cache miss and flow_store
hit, two memory copy (for swapping) and cryptographic operations
are entailed. Due to the interlinked design, these operations have
constant cost irrelevant to the number of tracked flows.

When encountering high flow concurrency, we found that the
flow lookup sub-procedure becomes the main factor of performance
slowdown, as confirmed by one of our tested middleboxes with
an inefficient lookup design (PRADS, see Section 6.3). Given the
constrained enclave resources, two requirements are therefore im-
posed on the underlying lookup structure: search efficiency and
space efficiency.

Dual lookupdesignwith cuckoohashing. We recognize cuckoo
hashing as the one to simultaneously achieve the two properties. It
has guaranteed O(1) lookup and superior space efficiency, e.g., 93%
load factor with two hash functions and a bucket size of 4 [25]. One
downside with hashing is their inherent cache-unfriendiness [36],
which incurs a higher cache miss penalty in the enclave. Thus,
while adopting cuckoo hashing, we still need a cache-aware design.

Our idea is to split lkup_table into a small table dedicated for
flow_cache, and a much larger one for flow_store. The large one
is searched only after a miss in the small one. The smaller table
contains the same number of entries as flow_cache and has a fixed
size that can well fit into a typical L3 cache (8MB). It is accessed
on every packet and thus is likely to reside in L3 cache most of the
time. Such a dual lookup design can perform especially well when
the flow_cache miss rate is relatively low.

To validate the design, we evaluate the two lookup approaches
with 1M flows, 512B states and flow_cache with 32K entries. As
expected, Figure 8 shows that the lower the miss rate, the larger
speedup the dual lookup achieves over the single lookup. Real-world
traffic often exhibits temporal locality [11, 48]. We also estimate the
miss rate of flow_cache over a real trace [9]. As shown in Fig. 9,
the miss rate can be maintained well under 20% with 16K cache
entries, confirming the temporal locality in the trace, hence the
efficiency of the dual lookup design in practice.

4.4 Security of State Management
We show that the adversary can only gain little knowledge from
the management procedures. It can neither manipulate the proce-
dures to influence middlebox behavior. Therefore, the proposed
management scheme retains the same security level as if it is not
applied, i.e., when all states are handled by EPC paging.

We first analyze the adversary’s view throughout the procedures.
Among the three tables, flow_cache and lkup_table are always
kept in the enclave, hence invisible to the adversary. Stored in
untrusted memory, flow_store is fully disclosed. The adversary
can obtain all store_entry’s, but never sees the state in clear text.

She will notice the creation of new flow state, but cannot link it
to a previous one, even if the two have exactly the same content,
because of the random initialization of the swap_count. Similarly,
she is not able to track traffic patterns (e.g., packets coming in
bursts) of a single flow, because the swap_count will increment

0.5

1

1.5

2

2.5

0 20 40 60 80 100

Sp
ee
du

p	

Cache	miss	rate	(%)

Figure 8: The speedup of
dual lookup design over sin-
gle lookup design.

0
0.1
0.2
0.3
0.4
0.5

0 20 40 60 80 100

M
iss
	ra
te

Packet	ID	(X	1M)

8K 16K
32K 64K

Figure 9: The miss rate of
flow_cachewith varying size
for a real network trace [9].

upon each swapping and produce different ciphertexts for the same
flow state. In general, she cannot link any two store_entry’s.

The explicit termination of a flow is unknown to the adversary,
as the procedure takes place entirely in the enclave. In contrast, she
will notice state removal events during expiration checking. Yet,
this information is useless as the entries are not linkable.

Now we consider an active adversary. Due to the authenticated
encryption, any modification of state_entry’s is detectable. Ma-
licious deletion of a state_entry will be also caught when it is
supposed to be swapped into the enclave after a hit in lkup_table.
She cannot inject a fake entry since lkup_table is inaccessible
to her. Furthermore, the replay attack will be thwarted because
swap_count keeps the freshness of the state.

5 INSTANTIATIONS OF LIGHTBOX
We have implemented a working prototype of LightBox and instan-
tiated it for three case-study stateful middleboxes.2

5.1 Porting Middleboxes to SGX
Amiddlebox system should be first ported to the SGX enclave before
it can enjoy the security and performance benefits of LightBox, as
illustrated in Fig. 2. After that, the middlebox’s original insecure
I/O module will be seamlessly replaced with etap and the network
frameworks stacked thereon; its flow state management procedures,
including memory management, flow lookup and termination, will
be changed to that of LightBox as well.

There are several ways to port a legacy middlebox. One is to
build themiddleboxwith trusted LibOS [7, 87], which are pre-ported
to SGX and support general system services within the enclave.
Another more specialized approach is to identify only the necessary
system services and customize a trusted shim layer for optimized
performance and TCB size [55]. To prepare for our middlebox case-
studies, we follow the second approach and implement a shim layer
that supports the necessary system calls and struct definitions.

Some prior systems allow modular development of middleboxes
that are automatically secured by SGX [35, 66, 86]. For middleboxes
built this way, we can directly substitute their network I/O and flow
state management with LightBox, augmenting them with full-stack
protection and efficient stateful processing.

2https://github.com/lightbox-impl/LightBox

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2359

5.9
7.4 7.9

8.8 9.0
7.4

8.6

10.8 11.6 12.4

0

4

8

12

16

64 128 256 512 1024

Th
ro
ug
hp

ut
	(G

bp
s)

Packet	size	(Byte)

X	1 X	10 X	100 X	1000

Figure 10: Performance of etap against
varied batch size.

6

8

10

12

14

16

0 200 400 600 800 1000

Th
ro
ug
hp

ut
	(G

bp
s)

Ring	size	of	etap

64B 128B 256B 512B 1024B

Figure 11: Performance of etap against
varied ring size.

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12

CP
U	
us
ag
e	
(%
)

Throughput	(Gbps)

64B
128B
256B
512B
1024B

Figure 12: CPU usage of etap against
middlebox throughput.

1.5

2

2.5

3

11

12

13

14

0 10 20 30 40 50 60 70 80 90 100
M
pp

s

Gb
ps

Packet	ID	(x	1M)

Throughput	 in	Gbps Throughput	 in	Mpps

Figure 13: Performance of etap on real trace.

5.2 Middlebox Case Studies
We now introduce the three middleboxes we instantiated for Light-
Box. For discussions on the efforts of instantiating them with Light-
Box, we assume that they have already been ported to SGX. Both
PRADS and lwIDS use libpcre for pattern matching, so we manu-
ally port it as a trusted library to be used within the enclave.
PRADS [27]. Capable of detecting network assets (e.g., OSes,
devices) in packets against predefined fingerprints, PRADS has
been widely used in academic research [29, 45, 47]. It uses libpcap
for packet I/O, so its main packet loop can be directly replaced
with the compatibility layer we built on etap (Section 3.6). We also
adapt its own flow tracking logic to LightBox’s state management
procedures without altering the original functionality. This affects
about 200 lines of code (LoC) in the original PRADS project with
10K LoC.
lwIDS. Based on the tcp reassembly library libntoh [28], we
built a lightweight IDS that can identify malicious patterns over
reassembled data. Whenever the stream buffer is full or the flow
is completed, the buffered content will be flushed and inspected
against a set of patterns. Note that the packet I/O and main stream
reassembly logic of lwIDS is handled by libntoh (3.8K LoC), which
we have already ported on top of etap (Section 3.6). The effort of
instantiating LightBox for lwIDS thus reduces to adjusting the state
management module of libntoh, which amounts to a change of
around 100 LoC.
mIDS. We design a more comprehensive middlebox, called mIDS,
based on the mOS framework [45] and the pattern matching en-
gine DFC [14]. Similar to lwIDS, mIDS will flush stream buffers
for inspection upon overflow and flow completion; but to avoid
consistent failure, it will also do the flushing and inspection when
receiving out-of-order packets, as we found that the logic for han-
dling such case is yet to be completed in current mOS code. Again,
since we have ported mOS (26K LoC) with etap (Section 3.6), the
remaining effort of instantiating LightBox for mIDS is to modify

the state management logic, resulting in 450 LoC change. Note that
such effort is one-time: hereafter, we can instantiate any middlebox
built with mOS without change.

6 EVALUATION
6.1 Methodology and Setup
Our evaluation comprises two main parts: in-enclave packet I/O,
where we evaluate etap from various aspects and decide the practi-
cally optimal configurations (Section 6.2); middlebox performance,
where we measure the efficiency of LightBox against a native and
a strawman approach for the three case-study middleboxes (Sec-
tion 6.3). We will also give discussions on experimental compari-
son between LightBox and previous systems (Section 6.4). We use
a real SGX-enabled workstation with Intel E3-1505 v5 CPU and
16GB memory in the experiments. Equipped with 1Gbps NIC, the
workstation is unfortunately incapable of reflecting etap’s real per-
formance, so we prepare two experiment setups. In what follows,
we will use K for thousand and M for million in the units.
Setup 1. The first setup is dedicated for evaluation on etap, where
we run etap-cli and etap on the same standalone machine and
let them communicate with the fast memory channel via kernel
networking. Note that etap-cli needs no SGX support and runs
as a normal user-land program. To reduce the side effect of running
them on the same machine, we tame the kernel networking buffers
such that they are kept small (500KB) but still performant. Our
intent here is to demonstrate that etap can catch up with the rate
of a real 10Gbps NICs in practical settings.
Setup 2. Deployed in a local 1Gbps LAN, the second setup is for
evaluating middlebox performance. We use a separate machine as
the gateway to run etap-cli, so it communicates with etap via
the real link. The gateway machine also serves as the server to
accept connections from clients (on other machines in the LAN).
We then use tcpkali [71] to generate concurrent TCP connections
transmitting random payloads from clients to the server; all ACK
packets from the server to clients are filtered out. Our environment
can afford up to 600K concurrent connections. We also obtain a real
trace from CAIDA [9] for experiments; it is collected by monitors
deployed at backbone networks. The trace is sanitized and contains
only anonymized L3/L4 headers, so we pad them with random
payloads to their original lengths specified in the header. We use
the first 100M packets from the trace in our experiments.

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2360

0

20

40

60

80

100

120

1 2 3 4 5 6

Pk
t.

de
la

y
(u

s)

#Flows (100K)

Native
Strawman
LightBox

(a) 64B packet.

0

20

40

60

80

1 2 3 4 5 6
Pk

t.
de

la
y

(u
s)

#Flows (100K)

Native
Strawman
LightBox

(b) 512B packet.

0

10

20

30

40

50

60

1 2 3 4 5 6

Pk
t.

de
la

y
(u

s)

#Flows (100K)

Native
Strawman
LightBox

(c) 1500B packet.

Figure 14: Performance of PRADS under controlled settings.

0

40

80

120

160

200

1 2 3 4 5 6

Pk
t.

de
la

y
(u

s)

#Flows (100K)

Native
Strawman
LightBox

(a) 64B packet.

0

40

80

120

160

200

1 2 3 4 5 6

Pk
t.

de
la

y
(u

s)

#Flows (100K)

Native
Strawman
LightBox

(b) 512B packet.

0

40

80

120

160

200

1 2 3 4 5 6

Pk
t.

de
la

y
(u

s)

#Flows (100K)

Native
Strawman
LightBox

(c) 1500B packet.

Figure 15: Performance of lwIDS under controlled settings.

0

80

160

240

320

Pk
td

el
ay

 (u
s) Native

Strawman
LightBox

0
800

1600
2400

0 10 20 30 40 50 60 70 80 90 100

#F
lo

w
s (

K)

Replay timeline (per 1M packets)

Figure 16: PRADS on real trace.

0

20

40

60

80

Pk
td

el
ay

 (u
s) Native

Strawman
LightBox

0
400
800

1200

0 10 20 30 40 50 60 70 80 90 100

#F
lo

w
s (

K)

Replay timeline (per 1M packets)

Figure 17: lwIDS on real trace.

6.2 In-enclave Packet I/O Performance
To evaluate etap, we create a bare middlebox which keeps reading
packets from etap without further processing. It is referred to as
PktReader. We keep a large memory pool (8GB) and feed packets
to etap-cli directly from the pool.
Parameterized evaluation. We first investigate how batching
size affects etap performance. The ring size is set as 1024. As shown
in Fig. 10, the optimal size appears between 10 and 100 for all packet
sizes. The throughput drops when the batching size becomes either
too small or overly large, matching our expectation and analysis
in Section 3.5. With a batching size of 10, etap can deliver small
64B (byte) packet at 7.4Gbps, and large 1024B packet at 12.4Gbps,
which is comparable to advanced packet I/O framework on modern
10Gbps NIC [69]. We set 10 as the default batching size and use this
configuration in all following experiments.

Shrinking etap ring is beneficial in that precious enclave re-
sources can be saved for middlebox functions, and in the case
of multi-threaded middleboxes, for efficiently supporting more
RX rings. However, smaller ring size generally leads to lower I/O
throughput. Figure 11 reports the results with varying ring sizes.
As can be seen, the tipping point occurs around 256, where the
throughput for all packet sizes begins to drop sharply as ring size
decreases. Beyond that and up to 1024, the performance appears
insensitive to ring size. We thus use 256 as the default ring size in
all subsequent tests.
Resource consumption. The rings contribute to the major etap
enclave memory consumption. One ring uses as small as 0.38MB as
per the default configuration, and a working etap consumes merely
0.76MB. The core driver of etap is run by dedicated threads and we
are also interested in its CPU consumption. The driver will spin in

the enclave if the rings are not available, since exiting enclave and
sleeping outside is too costly. This implies that a slower middlebox
thread will force the core driver to waste more CPU cycles in the
enclave. To verify such effect, we tune PkgReader with different
levels of complexity, and estimate the core driver’s CPU usage
under varying middlebox speed. As expected, the results in Fig. 12
delineate a clear negative correlation between the CPU usage of
etap and the performance of middlebox itself. With 70% utilization
of a single core the core driver can handle packets at its full speed.
Overall, we can see that an average commodity processor is more
than enough for our target 10Gpbs in-enclave packet I/O.
Performance on real trace. Figure 13 shows etap’s performance
on the real CAIDA trace that has a mean packet size of 680B. We
estimate the throughput for every 1M packets while replaying the
trace to etap-cli. As shown, although there are small fluctuations
overtime due to varying packet size, the throughput remains mostly
within 11 − 12Gbps and 2 − 2.5Mpps. This further demonstrates
etap’s practical I/O performance.

6.3 Middlebox Performance
We study the performance of the three middleboxes, each with
three variants: the vanilla version (denoted as Native) running as
a normal program; naive SGX port (denoted as Strawman) that
uses etap and our ported libntoh and mOS for networking, but
relies on EPC paging for however much enclave memory is needed;
the LightBox instance as described in Section 5. It is worth noting
that despite the name, the Strawman variants actually benefit a lot
from etap’s efficiency. Our goal here is primarily to investigate the
efficiency of our state management design.

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2361

0

20

40

60

80

5 10 15 20 25 30

Pk
t.

de
la

y
(u

s)

#Flows (10K)

Native
Strawman
LightBox

(a) 64B packet.

0

20

40

60

80

5 10 15 20 25 30
Pk

t.
de

la
y

(u
s)

#Flows (10K)

Native
Strawman
LightBox

(b) 512B packet.

0

20

40

60

80

5 10 15 20 25 30

Pk
t.

de
la

y
(u

s)

#Flows (10K)

Native
Strawman
LightBox

(c) 1500B packet.

Figure 18: Performance of mIDS under controlled settings.

0
200
400
600
800

0 10 20 30 40 50 60 70 80 90 100

#F
lo

w
s (

K)

Replay timeline (per 1M packets)

0

20

40

60

Pk
td

el
ay

 (u
s)

Native
LightBox
Strawman

Figure 19: mIDS on real trace.

We use the default configurations for all three middleboxes un-
less otherwise specified. For lwIDS we compile 10 pcre engines
with random patterns for inspection; for mIDS we build the DFC
engine with 3700 patterns extracted from Snort community ruleset.
The flow state of PRADS, lwIDS, and mIDS has a size of 512B3,
5.5KB, and 11.4KB4, respectively; the latter two include stream
reassembly buffer of size 4KB and 8KB. For LightBox variants, the
number of entries of flow_cache is fixed to 32K, 8K and 4K for
PRADS, lwIDS, and mIDS, respectively.

6.3.1 Controlled live traffic. To gain a better understanding of
how stateful middleboxes behave in the highly constrained enclave
space, we test them in controlled settings with varying number of
concurrent TCP connections between clients and the server. We
control the clients’ traffic generation load such that the aggregated
traffic rate at the server side remains roughly the same for different
degrees of concurrency. By doing so the comparisons are made fair
and meaningful. In addition, we start to collect data points only
when all connections are established and stabilized. We measure
the mean packet processing delay in microsecond (µs) every 1M
packets, and each reported data point is averaged over 100 runs.
PRADS. From Fig. 14, we can see that LightBox adds negligible
overhead (< 1µs) to native processing of PRADS regardless of
the number of flows. In contrast, Strawman incurs significant and
increasing overhead after 200K flows, due to the involvement of
EPC paging. Interestingly, by comparing the subfigures it can also
be seen that Strawman performs worse for smaller packets. This is
because smaller packet leads to higher packet rate while saturating
the link, which in turn implies higher page fault ratio. For 600K
flows, LightBox attains 3.5× — 30× speedup over the Strawman.
lwIDS. Figure 15 presents similar results for lwIDS. Here, the
performance of Strawman is further degraded, since lwIDS has
larger flow state size than PRADS and its memory footprint ex-
ceeds 550MB even when tracking only 100K flows. For 64B packet,
LightBox introduces 6− 8µs packet delay (4− 5× to native) because
the state management dominates the whole processing; nonethe-
less, it still outperforms Strawman by 5 − 16×. For larger packets,

3PRADS has 124B flow state, which is too small under our current experiment settings.
To better approximate realistic scenarios, we pad the flow state of PRADS to 512B
with random bytes. No such padding is applied to lwIDS and mIDS.
4This size is resulted from the rearrangement of mOS’s data structures pertaining to
flow state. We merge all data structures into a single one to ease memory management.

the network function itself becomes dominant and the overhead of
LightBox over Native is reduced, as shown in Fig. 15 (b) and (c).
mIDS. Among the case-study middleboxes, mIDS is the most com-
plicated one with the largest flow state. Here, our testbeds can scale
to 300K concurrent connections. For each connection mIDS will
track two flows, one for a direction, and allocate memory accord-
ingly. But since we filter out the trivial ACK packets from the server
to clients, we still count only one flow per connection. Figure 18 re-
veals that the performance of mIDS’s three variants follows similar
trends as in previous middleboxes: Native and LightBox are insen-
sitive to the number of concurrent flows; conversely, the overhead
of Strawman grows as more flows are tracked.

But in contrast to previous cases, now the overhead of LightBox
over Native becomes notable. This is explained by mIDS’s large
flow state size, i.e., 11.4 KB, which leads to the substantial cost of
encrypting/decrypting and copying states. Besides, we found that
for each packet, in addition to its own flow, mIDS will also access
the paired flow, doubling the cost of our flow tracking design (see
Section 4.2). Nonetheless, we can see that the gap is closing towards
larger packet size, as the network function processing itself weighs
in. Later in this section we will discuss how to further improve our
design to cope with large flow state and connection-based tracking.

6.3.2 Real trace. Now we investigate middlebox performance with
respect to the real CAIDA trace. The trace is loaded by the gateway
and replayed to the middlebox for processing. Again, we collect
the data points every 1M packets. Packets of unsupported types
are filtered out so only 97 data points are collected for each case.
Since L2 headers are stripped in the CAIDA trace, we also adjust
the packet parsing logic accordingly for the middleboxes. Yet an-
other important factor for real trace is the flow timeout setting. We
must carefully set the timeout so inactive flows are purged well in
time, lest excessive flows overwhelm the testbeds. Here, we set the
timeout for PRADS, lwIDS, and mIDS, to 60, 30, and 15 seconds,
respectively. Table 2 reports the overall throughout of relaying the
trace. Below we give more detailed analysis.
PRADS. Figure 16 shows that the packet delay of Strawman grows
with the number of flows; it needs about 240µs to process a packet
when there are 1.6M flows. In comparison, LightBox maintains low
and stable delay (around 6µs) throughout the test. A bit surprisingly,
it even edges over the native processing as more flows are tracked,
attributed to an inefficient chained hashing design used in the native

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2362

Table 2: Throughput (Mbps) under CAIDA trace.

Native Strawman LightBox
PRADS 429.24 67.399 928.06
lwIDS 689.11 182.57 685.36
mIDS 713.56 161.02 310.42

implementation. This highlights the importance of efficient flow
lookup in stateful middleboxes.
lwIDS. Compared with PRADS, the number of concurrent flows
tracked by lwIDS decreases, as shown in Fig. 17. This is due to
the halved timeout and the more aggressive strategy we used for
flow deletion: we remove a flow when a FIN or RST flag is received,
and we do not handle TIME_WAIT event. It can be seen that with
fewer flows, Strawman still incurs remarkable overhead, while the
difference between LightBox and Native is indistinguishable.
mIDS. The case for mIDS is tricky. Its current implementation of
flow timeout seems not to be fully working, so we replaced the
related code with the logic of checking all flows for expiration every
timeout interval. We also made some modifications to ensure that
the packet formats and abnormal packets in the real trace can be
properly processed. Figure 19 reports the test results. There is again
a large gap between Strawman and Native. Yet, as in the controlled
settings, there is some moderate gap between LightBox and Native,
due to the large state and double flow tracking design.

6.3.3 Reflections on future improvement. Above results show that
when the per-flow state size is not overly large, our current design,
which treats the state as a whole chunk of raw data in an agnostic
manner, suffices to achieve near-native performance for stateful
processing. Otherwise, it may not be wise to manage the large
state as a whole. We would expect more fine-grained partition and
handling of the state to improve efficiency.

A promising direction is to separate the large stream buffer (e.g.,
8KB in the case of mIDS) from the rest of the state (e.g., 3.4KB). The
processing of each packet will only touch a small portion of the
buffer, dispensing with the high overhead of encrypting, decrypting
and copying the entire buffer. Only when it is time to flush the buffer
for inspection do we need to load it into enclave in its entirety. This
will significantly diminish the cost of the flow tracking routine. Note
that here we should refrain from moving encrypted raw packets
individually out from the enclave, as this will leak the packet size
and count. A more secure way would be to divide the stream buffer
into chunks of fixed length and handle packets in batches.

In a similar vein, for middleboxes that access the flow state of
both connection directions on each packet, instead of treating both
flows equally, we can manage only the necessary data fields of the
paired flow, leaving the vast majority of its state untouched. This
requires a slight redesign of our current data structures to support
the effective linking of pairing flows.

A common theme in the fine-grained approaches suggested
above is to reduce the amount of unnecessary data moved across
the enclave boundary, and hence lessen the management overhead.
We leave the detailed designs and exploration of potential trade-offs
between security and efficiency as an interesting future work.

6.4 Comparison with Previous Systems
We now discuss previous secure middlebox systems built upon
SGX regarding experiment settings and performance evaluation.
They have been evaluated on various network functions, and they
demonstrate that certain workloads can be run in the enclave with
marginal performance overhead. This work differs from them in
that it takes into consideration: 1) the complexity of stateful pro-
cessing as seen in production-level middleboxes, and 2) the high
flow concurrency encountered in deployed networks. These two
features together pose unique challenges in operating stateful mid-
dleboxes in enclaves at a reasonable cost. To our best knowledge,
such experiment settings have not been considered in prior works.
Their experiments are mostly confined to small memory footprint
within EPC limit (128MB), avoiding expensive EPC paging; but in
our settings, the memory footprint of middleboxes can grow to
multiple GBs. We discuss some representative systems below.

In ShieldBox [86], several stateless middleboxes, including some
micro ones with simplistic functions, are evaluated. They process
packets independently, without tracking any flow states. Since the
middlebox memory footprint is always kept small, it is not very
surprising to see that the performance of shielded middleboxes is
close to native in virtually all test cases.

SGX-BOX [35] allows inspection over reassembled streams. How-
ever, it leaves flow state other than the stream buffer outside enclave
unprotected, obviating the challenge of fully protecting stateful mid-
dlebox processing. Besides, it reports only preliminary evaluation
that the overhead of inspecting a single stream is small.

Safebricks [66] presents a more diverse set of experiments. But
the middleboxes under testing are still arguably too simple in reality.
Unlike the stateful lwIDS and more advanced mIDS we have built, it
uses a simple DPI application working on individual packets but not
reassembled streams. The NAT and load balancer tested there are
also stateless. It does include a stateful firewall, but the functionality
seems basic, and more importantly, it was not evaluated against
concurrent flows.

To sum up, due to the different focuses and methodology, it is
not feasible to derive a direct and fair experimental comparison
between LightBox and previous systems. We for the first time eval-
uate non-trivial stateful middleboxes under settings with high flow
concurrency, and we hope that this work can invite more efforts on
bridging the research-practice gap for secure middlebox systems.
On the other hand, in addition to our intensive evaluations, it is
also interesting and critical to experiment with other important
aspects such as service function chaining, as done by previous
works [66, 86]. Our current work has built solid a foundation for
conducting further evaluations, and we leave them as future work.

7 RELATEDWORK
SecureMiddleboxes. BlindBox [77] is the first system that applies
cryptographic protocols (i.e., searchable encryption and garbled
circuit) to enable inspection on encrypted packet payloads. A list
of follow-up designs are proposed. The work [99] emphasizes on
the protection of middlebox rules and the support of more inspec-
tion rules. SPABox [26] and BlindIDS [10] put extra attention on
reducing session setup cost. Besides payloads, privacy-preserving

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2363

packet header checking is also studied. The work [57] considers us-
ing heavy homomorphic encryption for generic network functions,
which is mostly of theoretical interest only. SplitBox [3] employs a
distributed model for a certain class of packet header processing
with multi-party computation techniques. Embark [51] introduces
a customized prefix-matching scheme; by integrating the technique
from [77], it supports a wider class of middlebox functions. These
software-centric solutions are often restricted in functionality (es-
pecially for stateful processing) and performance.

There are also several designs based on trusted hardware, i.e.,
Intel SGX. S-NFV [78] proposes to protect specifically the middle-
box state, but not the entire middlebox processing over protected
traffic. Trusted Click [18] and ShieldBox[86] port Click modular
router [49] to the enclave. But they do not consider the protection
of metadata, and lack support for stateful processing due to the
limitation of Click that is inherently stateless. In a setting different
from middlebox outsourcing, SGX-BOX [35] and mbTLS [62] en-
able middleboxes to intercept TLS connections and securely inspect
traffic in the enclave, with primary focus on programmability and
deployability, respectively. One note on SGX-BOX is that it employs
the mOS framework for stateful processing outside enclave, so all
states except the encrypted stream buffers are left unprotected and
the correctness of stateful processing is not guaranteed. Targeting
the same scenario as us, the latest work SafeBricks [66] pays extra
attention to middlebox code protection, and applies IPSec for secure
traffic tunneling. While protecting packet headers, it is still vul-
nerable to traffic analysis attacks leveraging packet size and count.
None of these hardware-assisted solutions protects low-level traffic
metadata as LightBox does, nor do they enable efficient stateful
processing in real networks experiencing high flow concurrency.
Reducing overhead of SGX. One theme of our research is to min-
imize the performance overhead incurred by SGX while retaining
security guarantees. A main strand of works approach this goal
with switch-less ECALLs/OCALLs by avoiding expensive context
switching [2, 95]. This approach is orthogonal to our designs. In
fact, with the official release of such support [85], we can readily
replace our normal use of OCALL with the switch-less version for
even better efficiency. Eleos [63] introduces user-managed paging
to alleviate the overhead of naive EPC paging. Its cache-store archi-
tecture is similar to ours, but for generality it entails coarse-grained
data structure (e.g., page table) and complex procedures (e.g,. ad-
dress translation and page table walk), compared with our tailored
and optimized designs. Therefore, it may not suit the performance-
sensitive middlebox applications. To help grow EPC in the future, a
recent study proposes to refine the underlying data structure for
integrity checking [84]. Whether a large EPC can overcome SGX’s
current performance issue without enlarging the attack surface
remains an open problem. Our state management design signifi-
cantly increases the nominal secure memory that is usable by SGX
applications. We hope that the proposed compact data structure
and efficient lookup algorithm can provide helpful insights into
future study towards this direction.
SGX-enabled systems. Many systems have been built with SGX,
such as data analytics platforms [72, 75] and secure system ser-
vices [2, 37]. Their application scenarios are different from ours,

and in particular, they do not face the challenge of operating stateful
middlebox in real networks with strict performance requirements.

8 CONCLUSION
We present LightBox, an SGX-assisted secure middlebox system.
While many researches have explored the possibilities of securing
middleboxes with SGX and claimed its efficiency and practicality,
this is the first work to ascertain the claims from a more pragmatic
perspective. We bridge the research-practice gap by identifying two
critical challenges, from both security and functionality aspect, and
satisfactorily address them with domain knowledge and extensive
customization. Among others, our first main technical contribution
is an elegant in-enclave virtual network interface that is highly
secure, efficient and usable; and our second main innovation is
the flow state management scheme comprising data structures and
algorithms optimized for the enclave space. They together build
up a comprehensive solution for deploying off-site middleboxes
with strong protection and stateful processing, at near-native speed.
We hope that LightBox can push forward secure network function
virtualization and middlebox-as-a-service to the practical realm,
and that our work can invite more efforts on building hardware-
assisted secure systems that are practical and usable.

ACKNOWLEDGMENTS
We thank our shepherd, Lorenzo De Carli, for helping us improve
the paper, and the anonymous reviewers for their helpful com-
ments. This work was supported in part by the Research Grants
Council of Hong Kong under Grant CityU 11276816, Grant CityU
11212717, and Grant CityU C1008-16G, and by the National Natural
Science Foundation of China (NSFC) under Grant 61572412 and
Grant 61602396. Yajin Zhou was partially supported by the NSFC
under Grant 61872438, and the Fundamental Research Funds for
the Central Universities. Qian Wang was supported in part by the
NSFC under Grant 61822207, and by the Equipment Pre-Research
Joint Fund of the Ministry of Education of China (Youth Talent)
under Grant 6141A02033327. Kui Ren was supported by the NSFC
under Grant 61772236.

REFERENCES
[1] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative

technology for CPU based attestation and sealing. In Proc. of ACM HASP.
[2] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,

Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L.
Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In Proc.
of USENIX OSDI.

[3] Hassan Jameel Asghar, Luca Melis, Cyril Soldani, Emiliano De Cristofaro, Mo-
hamed Ali Kaafar, and Laurent Mathy. 2016. SplitBox: Toward Efficient Private
Network Function Virtualization. In Proc. of ACM HotMiddlebox.

[4] Pierre-Louis Aublin, Florian Kelbert, DanO’Keeffe, DivyaMuthukumaran, Chris-
tian Priebe, Joshua Lind, Robert Krahn, Christof Fetzer, David Eyers, and Peter
Pietzuch. 2017. TaLoS: Secure and transparent TLS termination inside SGX
enclaves. Imperial College London, Tech. Rep 5 (2017).

[5] AWS. 2018. AWS Direct Connect. Online at: https://aws.amazon.com/
directconnect/.

[6] Azure. 2018. Azure ExpressRoute. Online at: https://azure.microsoft.com/en-us/
services/expressroute/.

[7] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2014. Shielding applica-
tions from an untrusted cloud with Haven. In Proc. of USENIX OSDI.

[8] Theophilus Benson, Aditya Akella, Anees Shaikh, and Sambit Sahu. 2011. Cloud-
NaaS: a cloud networking platform for enterprise applications. In Proc. of ACM
SOCC.

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2364

https://aws.amazon.com/directconnect/
https://aws.amazon.com/directconnect/
https://azure.microsoft.com/en-us/services/expressroute/
https://azure.microsoft.com/en-us/services/expressroute/

[9] CAIDA. 2016. The CAIDA UCSD Anonymized Internet Traces 2016 - April 6th.
Online at: http://www.caida.org/data/passive/passive_2016_dataset.xml.

[10] Sébastien Canard, Aïda Diop, Nizar Kheir, Marie Paindavoine, and Mohamed
Sabt. 2017. BlindIDS: Market-Compliant and Privacy-Friendly Intrusion Detec-
tion System over Encrypted Traffic. In Proc. of ACM AsiaCCS.

[11] Martin Casado, Teemu Koponen, Daekyeong Moon, and Scott Shenker. 2008.
Rethinking Packet Forwarding Hardware. In Proc. of ACM HotNets.

[12] Shanwei Cen and Bo Zhang. 2017. Trusted Time and Monotonic Counters with
Intel Software Guard Extensions Platform Services. Online at: https://software.
intel.com/sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services.pdf.

[13] Sanchuan Chen, Xiaokuan Zhang, Michael K Reiter, and Yinqian Zhang. 2017.
Detecting privileged side-channel attacks in shielded execution with Déjá Vu.
In Proc. of ACM AsiaCCS.

[14] Byungkwon Choi, Jongwook Chae, Muhammad Jamshed, Kyoungsoo Park, and
Dongsu Han. 2016. DFC: Accelerating string pattern matching for network
applications. In Proc. of USENIX NSDI.

[15] M. Conti, Q. Q. Li, A. Maragno, and R. Spolaor. 2018. The Dark Side(-Channel)
of Mobile Devices: A Survey on Network Traffic Analysis. IEEE Communications
Surveys Tutorials 20, 4 (2018), 2658–2713.

[16] Mauro Conti, Luigi Vincenzo Mancini, Riccardo Spolaor, and Nino Vincenzo
Verde. 2016. Analyzing android encrypted network traffic to identify user
actions. IEEE TIFS 11, 1 (2016), 114–125.

[17] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
hardware extensions for strong software isolation. In Proc. of USENIX Security.

[18] Michael Coughlin, Eric Keller, and Eric Wustrow. 2017. Trusted Click: Overcom-
ing Security Issues of NFV in the Cloud. In Proc. of ACM SDN-NFV Security.

[19] Scott E. Coull and Kevin P. Dyer. 2014. Traffic Analysis of Encrypted Messaging
Services: Apple iMessage and Beyond. ACM SIGCOMM CCR 44, 5 (2014).

[20] Lorenzo De Carli, Robin Sommer, and Somesh Jha. 2014. Beyond pattern match-
ing: A concurrency model for stateful deep packet inspection. In Proc. of ACM
CCS.

[21] Robert DeFrancesco. 2019. Securing The Cloud With Zscaler. On-
line at: https://www.forbes.com/sites/robertdefrancesco/2019/03/06/
securing-the-cloud-with-zscaler/#29281a785d52.

[22] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin Fall,
Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy. 2009.
RouteBricks: Exploiting Parallelism to Scale Software Routers. In Proc. of ACM
SOSP.

[23] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and Thomas Shrimpton. 2012.
Peek-a-boo, I still see you: Why efficient traffic analysis countermeasures fail.
In Proc. of IEEE S&P.

[24] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and
Jinnah Dylan Hosein. 2016. Maglev: A Fast and Reliable Software Network Load
Balancer. In Proc. of USENIX NSDI.

[25] Ulfar Erlingsson, Mark Manasse, and Frank McSherry. 2006. A cool and practical
alternative to traditional hash tables. In Proc. of 7th Workshop on Distributed
Data and Structures (WDAS’06).

[26] Jingyuan Fan, Chaowen Guan, Kui Ren, Yong Cui, and Chunming Qiao. 2017.
SPABox: Safeguarding Privacy During Deep Packet Inspection at a MiddleBox.
IEEE/ACM Transactions on Networking 25, 6 (2017), 3753–3766.

[27] Edward Fjellskål. 2017. Passive Real-time Asset Detection System. Online at:
https://github.com/gamelinux/prads.

[28] Chema García. 2018. libntoh. Online at: https://github.com/sch3m4/libntoh.
[29] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert

Grandl, Junaid Khalid, Sourav Das, and Aditya Akella. 2014. OpenNF: Enabling
Innovation in Network Function Control. In Proc. of ACM SIGCOMM.

[30] Glen Gibb, Hongyi Zeng, and Nick McKeown. 2012. Outsourcing network
functionality. In Proc. of ACM HotSDN.

[31] Google. 2018. Google Dedicated Interconnect. Online at: https://cloud.google.
com/interconnect/docs/concepts/dedicated-overview.

[32] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.
Cache attacks on Intel SGX. In Proc. of ACM EuroSec.

[33] The Tcpdump Group. 2018. libpcap. Online at: https://www.tcpdump.org.
[34] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and

Manuel Costa. 2017. Strong and Efficient Cache Side-Channel Protection using
Hardware Transactional Memory. In Proc. of USENIX Security.

[35] Juhyeng Han, Seongmin Kim, Jaehyeong Ha, and Dongsu Han. 2017. SGX-Box:
Enabling Visibility on Encrypted Traffic Using a Secure Middlebox Module. In
Proc. of the First Asia-Pacific Workshop on Networking.

[36] Gregory L Heileman and Wenbin Luo. 2005. How Caching Affects Hashing. In
Proc. of ALENEX/ANALCO.

[37] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel.
2016. Ryoan: a distributed sandbox for untrusted computation on secret data.
In Proc. of USENIX OSDI.

[38] Mohsen Imani, Mohammad Saidur Rahman, and Matthew Wright. 2018. Adver-
sarial Traces for Website Fingerprinting Defense. In Proc. of ACM CCS.

[39] Zscaler Inc. 2019. Encrypted Traffic Dashboard. Online at: https://www.zscaler.
com/threatlabz/encrypted-traffic-dashboard.

[40] Zscaler Inc. 2019. SSL Inspection. Online at: https://www.zscaler.com/products/
ssl-inspection.

[41] Zscaler Inc. 2019. Zscaler Architecture: Cloud from the beginning. Online at:
https://www.zscaler.com/products/cloud-architecture-security-as-a-service.

[42] Intel. 2017. Data plane development kit. Online at: http://www.dpdk.org.
[43] Prerit Jain, Soham Desai, Seongmin Kim, Ming-Wei Shih, J Lee, Changho Choi,

Youjung Shin, Taesoo Kim, Brent Byunghoon Kang, and Dongsu Han. 2016.
Opensgx: An open platform for sgx research. In Proc. of NDSS.

[44] MuhammadAsim Jamshed, Jihyung Lee, SangwooMoon, Insu Yun, Deokjin Kim,
Sungryoul Lee, Yung Yi, and KyoungSoo Park. 2012. Kargus: a highly-scalable
software-based intrusion detection system. In Proc. of ACM CCS.

[45] Muhammad Asim Jamshed, YoungGyoun Moon, Donghwi Kim, Dongsu Han,
and KyoungSoo Park. 2014. mOS: A Reusable Networking Stack for Flow
Monitoring Middleboxes. In Proc. of USENIX NSDI.

[46] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. 2017. Stateless
Network Functions: Breaking the Tight Coupling of State and Processing. In
Proc. of USENIX NSDI.

[47] Junaid Khalid, Aaron Gember-Jacobson, Roney Michael, Anubhavnidhi Ab-
hashkumar, and Aditya Akella. 2016. Paving the way for NFV: Simplifying
middlebox modifications using StateAlyzr. In Proc. of USENIX NSDI.

[48] Changhoon Kim, Matthew Caesar, Alexandre Gerber, and Jennifer Rexford.
2009. Revisiting route caching: The world should be flat. In Proc. of International
Conference on Passive and Active Network Measurement.

[49] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans Kaashoek.
2000. The Click modular router. ACM Transactions on Computer Systems (TOCS)
18, 3 (2000), 263–297.

[50] Leslie Lamport. 1977. Proving the correctness of multiprocess programs. IEEE
transactions on software engineering 2 (1977), 125–143.

[51] Chang Lan, Justine Sherry, Raluca Ada Popa, and Sylvia Ratnasamy. 2016. EM-
BArk: Securely Outsourcing Middleboxes to the Cloud. In Proc. of USENIX NSDI.

[52] Patrick PC Lee, Tian Bu, and Girish Chandranmenon. 2010. A lock-free, cache-
efficient multi-core synchronization mechanism for line-rate network traffic
monitoring. In Proc. of IEEE Parallel & Distributed Processing (IPDPS).

[53] Paige Leskin. 2018. The 21 scariest data breaches of 2018. Online at: https:
//www.businessinsider.com/data-hacks-breaches-biggest-of-2018-2018-12.

[54] Hongda Li, Hongxin Hu, Guofei Gu, Gail-Joon Ahn, and Fuqiang Zhang. 2018.
vNIDS: Towards Elastic Security with Safe and Efficient Virtualization of Net-
work Intrusion Detection Systems. In Proc. of ACM CCS.

[55] Joshua Lind, Christian Priebe, DivyaMuthukumaran, Dan O’Keeffe, Pierre-Louis
Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Rüdiger
Kapitza, et al. 2017. Glamdring: automatic application partitioning for intel SGX.
In Proc. of USENIX ATC.

[56] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative instruc-
tions and software model for isolated execution. In Proc. of ACM HASP.

[57] Luca Melis, Hassan Jameel Asghar, Emiliano De Cristofaro, and Mohamed Ali
Kaafar. 2016. Private Processing of Outsourced Network Functions: Feasibility
and Constructions. In Proc. of ACM SDN-NFV Security.

[58] David Mills. 1985. Network Time Protocol. Online at: https://tools.ietf.org/html/
rfc958.

[59] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa. 2018. Oblix: An Efficient
Oblivious Search Index. In Proc. of IEEE S&P.

[60] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. Cachezoom:
How SGX amplifies the power of cache attacks. In Proc. of CHES.

[61] David Naylor, Richard Li, Christos Gkantsidis, Thomas Karagiannis, and Peter
Steenkiste. 2017. And Then There Were More: Secure Communication for More
Than Two Parties. In Proc. of ACM CoNEXT.

[62] David Naylor, Richard Li, Christos Gkantsidis, Thomas Karagiannis, and Peter
Steenkiste. 2017. And Then There Were More: Secure Communication for More
Than Two Parties. In Proc. of ACM CoNEXT.

[63] Meni Orenbach, Pavel Lifshits, MarinaMinkin, andMark Silberstein. 2017. Eleos:
ExitLess OS Services for SGX Enclaves. In Proc. of ACM Eurosys.

[64] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and
Scott Shenker. 2016. NetBricks: Taking the V out of NFV. In Proc. of USENIX
OSDI.

[65] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Green-
berg, David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu,
Changhoon Kim, and Naveen Karri. 2013. Ananta: Cloud Scale Load Balancing.
In Proc. of ACM SIGCOMM.

[66] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. 2018.
SafeBricks: Shielding Network Functions in the Cloud. In Proc. of USENIX NSDI.

[67] HAProxy Project. 2018. The reliable, high performance tcp/http load balancer.
Online at: http://www.haproxy.org/.

[68] Andrew Reed and Michael Kranch. 2017. Identifying HTTPS-Protected Netflix
Videos in Real-Time. In Proc. of ACM CODASPY.

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2365

http://www.caida.org/data/passive/passive_2016_dataset.xml
https://software.intel.com/sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services.pdf
https://software.intel.com/sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services.pdf
https://www.forbes.com/sites/robertdefrancesco/2019/03/06/securing-the-cloud-with-zscaler/#29281a785d52
https://www.forbes.com/sites/robertdefrancesco/2019/03/06/securing-the-cloud-with-zscaler/#29281a785d52
https://github.com/gamelinux/prads
https://github.com/sch3m4/libntoh
https://cloud.google.com/interconnect/docs/concepts/dedicated-overview
https://cloud.google.com/interconnect/docs/concepts/dedicated-overview
https://www.tcpdump.org
https://www.zscaler.com/threatlabz/encrypted-traffic-dashboard
https://www.zscaler.com/threatlabz/encrypted-traffic-dashboard
https://www.zscaler.com/products/ssl-inspection
https://www.zscaler.com/products/ssl-inspection
https://www.zscaler.com/products/cloud-architecture-security-as-a-service
http://www.dpdk.org
https://www.businessinsider.com/data-hacks-breaches-biggest-of-2018-2018-12
https://www.businessinsider.com/data-hacks-breaches-biggest-of-2018-2018-12
https://tools.ietf.org/html/rfc958
https://tools.ietf.org/html/rfc958
http://www.haproxy.org/

[69] Luigi Rizzo. 2012. netmap: A Novel Framework for Fast Packet I/O. In Proc. of
USENIX ATC.

[70] Alan Rusbridger. 2013. The Snowden Leaks and the Public. The New York Review
of Books (2013).

[71] Satori. 2017. Fast multi-core TCP and WebSockets load generator. Online at:
https://github.com/machinezone/tcpkali.

[72] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
data analytics in the cloud using SGX. In Proc. of IEEE S&P.

[73] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K Reiter, and Guangyu Shi.
2012. Design and implementation of a consolidated middlebox architecture. In
Proc. of USENIX NSDI.

[74] Jaebaek Seo, Byounyoung Lee, Seongmin Kim, Ming-Wei Shih, Insik Shin,
Dongsu Han, and Taesoo Kim. 2017. SGX-Shield: Enabling address space layout
randomization for SGX programs. In Proc. of NDSS.

[75] Fahad Shaon, Murat Kantarcioglu, Zhiqiang Lin, and Latifur Khan. 2017. SGX-
BigMatrix: A Practical Encrypted Data Analytic Framework With Trusted Pro-
cessors. In Proc. of ACM CCS.

[76] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-
nasamy, and Vyas Sekar. 2012. Making middleboxes someone else’s problem:
network processing as a cloud service. In Proc. of ACM SIGCOMM.

[77] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. 2015. Blind-
Box: Deep Packet Inspection for Encrypted Traffic. In Proc. of ACM SIGCOMM.

[78] Ming-Wei Shih, Mohan Kumar, Taesoo Kim, and Ada Gavrilovska. 2016. S-NFV:
securing NFV states by using SGX. In Proc. of ACM SDN-NFV Security.

[79] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena.
2016. Preventing page faults from telling your secrets. In Proc. of AsiaCCS.
ACM.

[80] Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright. 2018. Deep
Fingerprinting: UnderminingWebsite Fingerprinting Defenses with Deep Learn-
ing. In Proc. of ACM CCS.

[81] Snort. 2018. Network Intrusion Detection & Prevention System. Online at:
https://www.snort.org/.

[82] Snort. 2018. Rule Subscriptions. Online at: https://www.snort.org/products#
rule_subscriptions.

[83] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu. 2017. NFP:
Enabling Network Function Parallelism in NFV. In Proc. of ACM SIGCOMM.

[84] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. 2018. VAULT: Re-
ducing Paging Overheads in SGX with Efficient Integrity Verification Structures.
In Proc. of ACM ASPLOS.

[85] Hongliang Tian, Qiong Zhang, Shoumeng Yan, Alex Rudnitsky, Liron Shacham,
Ron Yariv, and Noam Milshten. 2018. Switchless Calls Made Practical in Intel
SGX. In Proc. of ACM SysTEX.

[86] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod Bhato-
tia, and Christof Fetzer. 2018. ShieldBox: Secure Middleboxes using Shielded
Execution. In ACM Proc. of SOSR.

[87] Chia-che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. In Proc. of USENIX ATC.

[88] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich.
2017. Stadium: A Distributed Metadata-Private Messaging System. In Proc. of
ACM SOSP.

[89] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. 2015.
Vuvuzela: Scalable private messaging resistant to traffic analysis. In Proc. of
ACM SOSP.

[90] Michael Walfish, Jeremy Stribling, Maxwell Krohn, Hari Balakrishnan, Robert
Morris, and Scott Shenker. 2004. Middleboxes No Longer Considered Harmful.
In Proc. of USENIX OSDI.

[91] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014.
Effective Attacks and Provable Defenses for Website Fingerprinting. In Proc. of
USENIX Security.

[92] Tao Wang and Ian Goldberg. 2017. Walkie-Talkie: An Efficient Defense Against
Passive Website Fingerprinting Attacks. In Proc. of USENIX Security.

[93] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. 2017. Leaky cauldron
on the dark land: Understanding memory side-channel hazards in sgx. In Proc.
of ACM CCS.

[94] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. 2016.
AsyncShock: Exploiting synchronisation bugs in Intel SGX enclaves. In Proc. of
ESORICS.

[95] Ofir Weisse, Valeria Bertacco, and Todd Austin. 2017. Regaining Lost Cycles
with HotCalls: A Fast Interface for SGX Secure Enclaves. In Proc. of ACM ISCA.

[96] Andrew M. White, Austin R. Matthews, Kevin Z. Snow, and Fabian Monrose.
2011. Phonotactic Reconstruction of Encrypted VoIP Conversations: Hookt on
Fon-iks. In Proc. of IEEE S&P.

[97] wolfSSL Inc. 2017. wolfSSL. Online at: https://www.wolfssl.com/
wolfssl-with-intel-sgx/.

[98] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In Proc. of

LightBox

state	mgmt

etap

MB	1	(FW)

LightBox

state	mgmt

etap

MB	2	(IDS)

LightBox

state	mgmt

etap

MB	3	(LB)

Figure 20: Service function chain connected by etap’s.

IEEE S&P.
[99] Xingliang Yuan, Xinyu Wang, Jianxiong Lin, and Cong Wang. 2016. Privacy-

preserving Deep Packet Inspection in Outsourced Middleboxes. In Proc. of IEEE
INFOCOM.

[100] Fan Zhang. 2017. mbedtls-SGX. Online at: https://github.com/bl4ck5un/
mbedtls-SGX.

[101] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. 2016. Town
crier: An authenticated data feed for smart contracts. In Proc. of ACM CCS.

A MULTI-THREADING SUPPORT
RSSEmulation for etap. Manymiddleboxes utilizemulti-threading
to achieve high throughput [22, 44, 45, 73]. The standard parallel
architecture used by them relies on receiver-side scaling (RSS) or
equivalent software approaches to distribute traffic into multiple
queues by flows. Each flow is processed in its entirety by one single
thread without affecting the others. We equip etap with an emula-
tion of this NIC feature to cater for multi-threaded middleboxes.

With the emulation, multiple RX rings will be created by etap,
and each middlebox thread is binded to one RX ring. The core
driver will hash the 5-tuple to decide which ring to push a packet,
and the poll driver will only read packets from the ring binded to
the calling thread. As the number of rings increases, the size of
each ring should be kept small to avoid excessive enclave memory
consumption. Note that we have discussed practical ring size in
Section 6.
Multi-threaded State Management. The RSS mechanism en-
sures that each flow is processed in isolation to others. For a multi-
threadedmiddlebox, we assign each thread a separate set of flow_cache,
lkup_table, and flow_store. There is no intersection between the
sets, and thus all threads can perform flow tracking simultaneously
without data racing. Note that compared to the single-threaded case,
this partition scheme does not change memory usage in managing
the same number of flows.

B EXTENSION OF SERVICE MODEL
To clearly lay out the core designs of LightBox, so far we have
focused on a basic service model. That is, a single middlebox, and
a single service provider hosting the middlebox service. Now we
discuss how some other typical scenarios can be readily supported.
Service function chaining. Sometimes multiple logical middle-
boxes are chained together to process network traffic, which is
commonly referred to as service function chaining [43, 83]. This
service model is also considered in two recent systems for secure
middlebox outsourcing. SafeBricks [66] chains the middleboxes
within the same enclave, and isolates them by enforcing least privi-
lege on each. In comparison, ShieldBox [86] chains the middleboxes
with different enclaves run by different processes on the same phys-
ical machine. Both designs, however, run the chain on a single

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2366

https://github.com/machinezone/tcpkali
https://www.snort.org/
https://www.snort.org/products#rule_subscriptions
https://www.snort.org/products#rule_subscriptions
https://www.wolfssl.com/wolfssl-with-intel-sgx/
https://www.wolfssl.com/wolfssl-with-intel-sgx/
https://github.com/bl4ck5un/mbedtls-SGX
https://github.com/bl4ck5un/mbedtls-SGX

physical machine that has a limited EPC size, and do not consider
the resource-demanding stateful middlebox. Practical execution of
a single stateful middlebox in the enclave is already a non-trivial
task — what we strive to achieve in this paper — let alone running
multiple enclaved stateful middleboxes on the samemachine, where
severe performance issue is almost inevitable.

To this end, we propose to drive each middlebox in the chain
with a LightBox instance on a separate physical machine. Along
the chain, one instance’s etap will be simultaneously peered with
previous and next instance’s etap (or the etap-cli at the gateway).
Now each etap’s core driver will effectively forward the encrypted
traffic stream to the next etap. This way, each middlebox in the
chain can access packet at line rate and run at its full speed. Note
that the secure bootstrapping should be adjusted accordingly. In
particular, the network administrator needs to attest each LightBox,
and provision it with proper peer information.

Disjoint service providers. Middlebox outsourcing may span a
disjoint set of service providers. A primary one may provide the
networking and computing platform, yet others (e.g., professional
cybersecurity companies) can provide bespoke middlebox functions
and/or processing rules. Such service market segmentation calls
for finer control over the composition of the security services.

The SGX attestation utility enables any participant of the joint
service to attest enclaves on the primary service provider’s platform.
Therefore, they can securely provision their proprietary code/rule
set to a trusted bootstrapping enclave. The code is then compiled in
the bootstrapping enclave, and together with the rules, provisioned
to LightBox enclave. Such on-the-fly compilation of private code in
the enclave is first described in [72]. In [66], it is applied to bootstrap
secure middleboxes with different network function vendors. We
refer interested readers to [66] for more details.

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2367

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Our Contribution

	2 Overview
	2.1 Service Model
	2.2 SGX Background
	2.3 LightBox Overview
	2.4 Adversary Model

	3 The etap Device
	3.1 Overview
	3.2 Architecture
	3.3 Drivers
	3.4 Security Analysis
	3.5 Performance Boosting
	3.6 Usability

	4 Flow State Management
	4.1 Data Structures
	4.2 Management Procedures
	4.3 Fast Flow Lookup
	4.4 Security of State Management

	5 Instantiations of LightBox
	5.1 Porting Middleboxes to SGX
	5.2 Middlebox Case Studies

	6 Evaluation
	6.1 Methodology and Setup
	6.2 In-enclave Packet I/O Performance
	6.3 Middlebox Performance
	6.4 Comparison with Previous Systems

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Multi-threading Support
	B Extension of Service Model

