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ABSTRACT

Dynamic analysis based on the full-system emulator QEMU is
widely used for various purposes. However, it is challenging to
run firmware images of embedded devices in QEMU, especially the
process to boot the Linux kernel (we call this process rehosting
the Linux kernel in this paper). That’s because embedded devices
usually use different system-on-chips (SoCs) from multiple ven-
dors and only a limited number of SoCs are currently supported in
QEMU.

In this work, we propose a technique called peripheral trans-
plantation. The main idea is to transplant the device drivers of
designated peripherals into the Linux kernel binary. By doing so,
it can replace the peripherals in the kernel that are currently un-
supported in QEMU with supported ones, thus making the Linux
kernel rehostable. After that, various applications can be built.

We implemented this technique inside a prototype system called
ECMO and applied it to 815 firmware images, which consist of 20
kernel versions and 37 device models. The result shows that ECMO
can successfully transplant peripherals for all the 815 Linux kernels.
Among them, 710 kernels can be successfully rehosted, i.e., launch-
ing a user-space shell (87.1% success rate). The failed cases are
mainly because the root file system format (ramfs) is not supported
by the kernel. Meanwhile, we are able to inject rather complex
drivers (i.e., NIC driver) for all the rehosted Linux kernels by in-
stalling kernel modules. We further build three applications, i.e.,
kernel crash analysis, rootkit forensic analysis, and kernel fuzzing,
based on the rehosted kernels to demonstrate the usage scenarios
of ECMO.
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1 INTRODUCTION

IoT devices (or embedded devices) are becoming popular [7], many
of which run Linux-based operating systems [30]. At the same
time, hundreds of vulnerabilities are discovered every year for the
Linux kernel [22]. Once the devices are compromised, attackers
can control them to launch further attacks. As such, the security
of embedded devices, especially the kernel, deserves a thorough
analysis.

Dynamic analysis has been widely used for various purposes [31,
41, 44, 47, 51, 70]. It can monitor the runtime behavior of the target
system, complementing the static analysis [30, 45, 55, 61]. Rehost-
ing, also known as emulation, is used to run a target system inside
an emulated environment, e.g., QEMU, and provides the capability
to introspect the runtime state. Based on this capability, different
applications, e.g., kernel crash analysis, rootkit forensic analysis,
and kernel fuzzing, can be built. Running the Linux kernel in QEMU
for the desktop system is a solved problem. However, rehosting
embedded system is challenging. First, rehosting Linux kernel is
dependent on the emulation of peripherals. Without the right emu-
lation of these peripherals, Linux kernel may halt or crash during
the rehosting process. Second, peripherals vary widely. Due to the
diverse peripherals in the wild, it is not practical for QEMU to
support all kinds of peripherals in any SoC. Third, vendors may
not strictly follow the GPL license [35, 42], resulting in the lack of
public information (e.g., specifications, datasheets, and source code).
These obstruct the diagnosis of failures when adding emulation


https://doi.org/10.1145/3460120.3484753
https://doi.org/10.1145/3460120.3484753

@

—®

Peripherals
to be Transplanted

Retosed i Kene () — (@8) SRR
N

Figure 1: The overview of our system (ECMO)

O

Firmware Image

EC

<

(¢}

support of new SoCs in QEMU. Thus, how to rehost the embedded
Linux kernels in QEMU is still an open research question.
Previous research [26, 50] provides the capability of rehosting
user-space programs by running a customized Linux kernel for one
SoC that is supported in QEMU. This works well because user-space
programs mainly depend on standard system calls that are provided
by the underlying Linux kernel. Different from user-space programs,
the OS kernel interact with peripherals that are usually different in
different SoCs. Some researchers have proposed to use real devices
to perform the dynamic analysis [43, 54, 62, 69]. Such solutions
do not scale since there exist a large number of embedded devices.
Other mechanism that are for the bare-metal systems [28, 37, 52],
i.e., embedded systems without an OS kernel or having a thin layer
of abstraction, cannot be directly used to rehost the Linux kernel as
the Linux kernel is far more complicated than the bare-metal ones.

Key Insights To address the above mentioned three challenges,
we have three key insights. First, only early-boot peripherals (i.e.,
interrupt controller, timer, and UART) need to be supported during
the rehosting process. After successfully rehosting the Linux kernel,
we are able to install the different peripheral drivers in ramfs to
support the other peripherals with kernel modules. Second, Linux
kernel provides interfaces to implement drivers of these peripher-
als, which brings the chance to replace these diverse peripherals
with designated ones. Third, embedded Linux kernels are usually
modified based on the mainstream Linux kernel, which is open-
sourced. The modification mainly aims to add support for specific
peripherals while most of the other code is unchanged.

Our Approach With the insights, we propose peripheral trans-
plantation technique, which is device-independent and works towards
the Linux kernel without the need of the source code. The main idea
is, instead of manually adding emulation support of various periph-
erals in QEMU, we can transplant the device drivers of designated
peripherals into the target Linux kernel binary. It replaces the pe-
ripherals in the target Linux kernel that are currently unsupported
in QEMU with supported ones, thus making the Linux kernel re-
hostable. Specifically, our system transplants two components, i.e.,
the emulated models of peripheral into QEMU and their device
drivers into the Linux kernel (if they are not initialized originally).
Transplanting a peripheral model requires the emulation code for
specified (or simplified) peripheral and integrates it into QEMU.
This is straightforward since QEMU provides us with APIs to add
new peripheral models.

However, transplanting a driver into the Linux kernel is non-
trivial. First, we need to substitute the original (unsupported) device

driver with the transplanted one. Since the peripheral driver is ini-
tialized with indirect calls, we need to locate function pointers and
rewrite them in a stripped binary on the fly, which is challeng-
ing. Second, the transplanted driver should not affect the memory
view of the original kernel. Otherwise, the memory holding the
transplanted driver can be overwritten since the Linux kernel is
not aware of the existence of that memory region. Third, the trans-
planted driver needs to invoke APIs in the Linux kernel. Otherwise,
the transplanted driver cannot function as desired.

To overcome the difficulties of transplanting drivers, we design
and implement a new algorithm to identify the required function
pointers (Section 4.2) and introduce opaque memory (Section 4.3) to
guarantee that the transplanted driver does not affect the memory
view of the original kernel. Finally, we implement and integrate
the peripheral transplantation technique into QEMU to create a
prototype called ECMO. Figure 1 shows the overview of ECMO. It
receives the firmware image and the peripherals to be transplanted.
Then it transplants the peripherals to the Linux kernel binary to
make it rehostable in QEMU and launch a shell. Note that ECMO
focuses on transplanting the early-boot peripherals (i.e., interrupt
controller, timer, and UART), which are needed to rehost the Linux
kernel. Once the Linux kernel is rehosted, users can install different
peripheral drivers to support more peripherals with kernel modules
and build various applications to analyze the rehosted kernel.

We apply ECMO on 815 Linux kernels extracted from firmware
images, including 20 different kernel versions and 37 device mod-
els. ECMO now only supports ARM architecture, which is widely
used in embedded systems [17]. However, it does not rely on any
architecture specific feature and can be easily extended to the other
architectures (Section 6). Our experiment shows that ECMO can
successfully transplant peripherals for all 815 Linux kernels. Among
them, 710 are able to launch a shell. The failed cases are due to the
unsupported root file system format (ramfs) in the rehosted kernel.
Furthermore, we successfully install one Ethernet device driver (i.e.,
smc91x) on all the rehosted Linux kernel, which demonstrates the
capability to support more peripherals based on rehosted Linux
kernel. To demonstrate the functionality and usefulness of our sys-
tem, we build and port three applications, including kernel crash
analysis, rootkit forensic analysis, and kernel fuzzing. Note that,
the applications themselves are not the contribution of our work.
They are used to demonstrate the usage scenarios of our system.
Other applications that can be built on QEMU can also be ported.

In summary, this work makes the following main contributions.
e Novel technique We propose a device-independent technique

called peripheral transplantation that can rehost Linux kernels of

embedded devices without the availability of the source code.

e New system We implement and integrate the peripheral trans-
plantation technique into QEMU, to create a prototype system
called ECMO.

e Comprehensive evaluation We apply ECMO to 815 Linux
kernels from different images. It can transplant peripherals for
all the Linux kernels and successfully launch the shell for 710
ones.

To engage with the community, we release the source code of
our system in https://github.com/valour01/ecmo. We also provide
an online service [6] for the community.



MACHINE_START (VERSATILE_AB, "ARM-Versatile AB")
.atag_offset = 0x100,
.map_io = versatile_map_io,
.init_early = versatile_init_early,
.init_irq = versatile_init_irq,
.init_time = versatile_timer_init,
.init_machine = versatile_init,
.restart = versatile_restart,

MACHINE_END

O 0GR W=

Figure 2: The machine description for ARM-Versatile AB.

1 //UART read call back

2 static uint64_t serial_mm_read(void *opaque,

3 hwaddr addr, unsigned size) {

4 SerialMM *s = SERIAL_MM(opaque);

5 return serial_ioport_read(&s->serial,

6 addr >> s->regshift, 1);
7 3

8 //register read/write call back functions

9 static const MemoryRegionOps serial_mm_ops = {
10 .read = serial_mm_read,

11 .write = serial_mm_write,

12 .

13 X

Figure 3: The callback functions for UART emulation in
QEMU

2 BACKGROUND

2.1 Linux Kernel

Linux kernel source code can be categorized into three types ac-
cording to their functionalities. The first type is the architecture
independent code, which contains the core functionality used by
all CPU architectures. The second type is architecture dependent
code. For instance, the sub-directories under the arch/ directory
contain the code for multiple CPU architectures. The third type
is board-specific code, which is used by specific board (machine).
For instance, the directory arch/arm/versatile/ contains the code
used by the machine named versatile. The kernel compiled for one
machine usually cannot be directly booted on other machines (or
QEMU instances that emulate different machines.)

2.2 ARM Machines

Embedded systems usually use SoCs from multiple vendors with
different designs. For instance, they contain different peripherals.
Each SoC is expressed as a machine in the Linux kernel. Manu-
facturers develop the board support package (BSP) (e.g., drivers of
peripherals) so that Linux kernel can use these peripherals.

Linux kernel introduces the structure machine_desc for ARM to
describe different machines. The structure machine_desc provides
interfaces to implement BSPs. For example, Figure 2 shows an exam-
ple of one machine ARM-Versatile AB in the Linux kernel (Version
3.18.20). It initializes function pointers and data pointers with its im-
plementation. Specifically, in line 5, the function pointer init_irq is
assigned the value as versatile_init_irq. During the booting process,
the Linux kernel will invoke the function machine_desc— init_irq
to initialize the IC (interrupt controller). The same logic applies to
the function pointer init_time. Linux kernel invokes the function
machine_desc—init_time to initialize the timer.

2.3 QEMU

QEMU [16] is one of the most popular full-system emulators. It
emulates different machines by providing different machine models.
A machine model consists of CPU, memory, and different kinds
of peripheral models. To emulate a peripheral, QEMU registers
the read/write callback functions for the MMIO (memory-mapped
1I/0) address space of the peripheral. Once the Linux kernel run-
ning inside QEMU reads from or writes into the address inside the
MMIO range, the registered callback functions inside QEMU will
be invoked to emulate the peripheral. Basically, it maintains an
internal state machine to implement the peripheral’s functionality.
Figure 3 shows an example of the registered callback functions for
UART emulation. Specifically, when the Linux kernel reads from
the MMIO space of the emulated UART device (e.g., 0x01C42000),
the serial_mm_read function will be invoked by QEMU to emulate
the read access.

3 CHALLENGES AND OUR SOLUTION

The main goal of our work is to rehost Linux kernel binaries that are
originally running on embedded systems in QEMU. This lays the
foundation of applications that rely on the capability to introspect
runtime states of the Linux kernel, e.g., kernel crash and vulnera-
bility analysis [31, 41], rootkit forensic analysis [56, 64], and kernel
fuzzing [51, 59].

3.1 Challenges

Rehosting the Linux kernel on QEMU faces the following chal-
lenges.

Peripheral dependency Rehosting the Linux kernel requires
QEMU to emulate the peripherals, e.g., the interrupt controller, that
the Linux kernel depends on. During the booting process, Linux
kernel will read from or write into the peripheral registers and
execute the code according to the state specified by the value of
peripheral registers. Without the emulation of these peripherals,
the rehosted kernel will halt or crash during the booting process.

Peripheral diversity SoCs vary widely [19] and different ven-
dors, e.g., Broadcom, Marvell may design and develop different
SoCs. These new SoCs introduce many new peripherals that are not
currently supported in QEMU and the open-sourced mainstream
of the Linux kernel. Due to the diversity of peripherals, there are
still a large number of devices that are not supported. Meanwhile,
manually developing peripheral emulation routine is tedious and
error-prone, especially due to the diversity of peripherals. Thus,
the diversity of peripherals brings significant challenge to build
a general emulator, which can re-host various Linux kernels of
embedded devices.

Lack of public information The information (e.g., specifica-
tions, datasheets, and source code) of SoCs and firmware images
are usually not public. This is because vendors may not release
the detailed hardware specification. Furthermore, vendors may not
release the source code immediately after releasing the image and
not all vendors strictly follow the GPL license [35, 42]. Meanwhile,
the binary of the Linux kernel is stripped and has no particular
headers (i.e., ELF section headers) or debugging information. These
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Figure 4: The overview of peripheral transplantation.

obstruct the diagnosis of failures when adding emulation support
of new SoCs in QEMU.

3.2 Our Solution: Peripheral Transplantation

In this work, we propose a technique called peripheral transplan-
tation. The main idea is, instead of manually adding emulation
support of various peripherals in QEMU, we can replace the periph-
erals that are used in target Linux kernels with existing peripherals in
QEMU. By doing so, we can rehost the Linux kernel and the kernel
functionality is intact (Section 5.4).

Figure 4 shows the overview of peripheral transplantation. This
involves the injection of peripheral models into QEMU and the
ECMO Driver into the Linux kernel. To distinguish them from origi-
nal ones of the (emulated) machine, we call the transplanted periph-
eral models ECMO Peripheral. To let the kernel use the transplanted
ECMO Driver, our system identities the functions that are used
to initialize device drivers (ECMO Forward Pointers) and redirects
them to the functions inside the ECMO Driver (Fig. 4 €)). Moreover,
our system identifies the APIs that are responsible for interacting
with peripheral models. These APIs are used by the ECMO Driver
to communicate with the transplanted peripheral models (Fig. 4 @).
The addresses of these functions are called ECMO Backward Pointers
in this paper. We will elaborate how to identify the ECMO Pointers
in Section 4.2.

Note that, to ensure the ECMO Driver does not affect the memory
view of the rehosted Linux kernel, we propose the concept of the
opaque memory. This memory region is available on the emulated
machine but cannot be seen by the Linux kernel. As such, we can
prevent the kernel from allocating memory pages that are reserved
for the ECMO Driver. We will elaborate this in Section 4.3.

3.3 An Illustration Example of Peripheral
Transplantation

Fig. 5 shows a concrete example of transplanting one peripheral (i.e.,
timer) into the Linux kernel. In particular, the function start_kernel
is responsible for initializing the Linux kernel. It will invoke several
different functions, including setup_arch and and time_init.

The function setup_arch will setup architecture-related config-
urations and initialize the machine_desc structure (Fig. 5 ). This

structure contains multiple function pointers (ECMO Forward Point-
ers) that will be used to initialize corresponding drivers. Our system
first locates the function setup_arch and then injects a function
(install_ECMO_forward_pointers) to change the pointers to our
own ones (Fig. 5 @).

When the function init_time is invoked to initialize the timer
(Fig. 5 @), the ECMO_init_time, which is pointed by machine_desc->
init_time, will be invoked to initialize the injected timer driver
(ECMO Driver) in QEMU (Fig. 5 @) (through ECMO Forward Point-
ers), instead of the original one. Accordingly, this function will
invoke APIs (through ECMO Backward Pointers) in the Linux kernel
to interact with the ECMO Peripheral (Fig. 5 @).

Note that, the code snippets in Fig. 5 are for the illustration
purpose. Our system does not rely on the availability of the source
code. It directly works towards the Linux kernel binary that is retrieved
from a firmware image.

4 SYSTEM DESIGN AND IMPLEMENTATION

In order to rehost Linux kernels, our system first extracts and de-
compresses the Linux kernel from the given firmware image (Sec-
tion 4.1). We then apply multiple strategies to identify both ECMO
Forward and Backward Pointers (Section 4.2). These pointers are
essential for ECMO Drivers. At last, we semi-automatically gener-
ate ECMO Drivers and load them at runtime to boot the kernels
(Section 4.3). Fig. 6 shows the overall workflow.

4.1 Decompress Linux Kernel

Firmware image usually consists of the OS, which is the Linux
kernel, and user applications. However, the Linux kernel inside the
firmware images is usually compressed. To identify ECMO Pointers,
we need to first extract the Linux kernel and decompress it. With
the decompressed Linux kernel, we can utilize different strategies
to locate the ECMO Pointers.

Specifically, we feed the firmware image to firmware extraction
tool (i.e., Binwalk) to extract the kernel image. Then we directly
feed the extracted kernel image (with added u-boot information) to
QEMU. Since the code for decompressing the Linux kernel does not
operate on the peripherals (except the UART to show the message
of decompressing Linux kernel), it can be successfully executed in
vanilla QEMU.

As shown in Fig. 7, function decompress_kernel in line 16 is in-
voked to decompress the kernel. Its first parameter (i.e., output_start)
indicates the start address of the decompressed kernel. Thus, if we
can identify when decompress_kernel is invoked, we can get the
first parameter by checking the machine register (RO in ARM) and
dump the decompressed Linux kernel.

We notice that the function decompress_kernel is invoked by
the assembly code in arch/arm/boot/compressed/head.S. We observe
that this snippet of assembly code remains unchanged in different
kernel versions. With this observation, we identify the address of
instruction BL decompress_kernel by strictly comparing the exe-
cution trace of QEMU and the hard coded assembly code. After
finding the instruction, we can obtain the address of the function
decompress_kernel and the value of output_start according to the
execution trace. With this information, we can dump the decom-
pressed Linux kernel after the function decompress_kernel returns.



start_kernel(void) { o setup_arch () { o install ECMO_forward_pointer(void
e .. ) {
/*Initialize the architecture specific /*setup_machine_fdt return the
Properties */ value of machine_desc */ machine_desc->init_time =
setup_arch(); machine_desc = setup_machine_fdt(); &ECMO _init_time;
cee install_ ECMO_forward_pointer(); — }
/*Initialize the Timer*/ e }
time_init();
- L. time_init(void) {
) if ({machine_desc->init_time) o ECMO_init_time(void) {
general_time_init(); args = ECMO_Timer;
else f = &configure_time_APIs; e
configure_time_APIs(args) { /*ECMO_init_time()*/ f (*f)(args);
“es machine_desc->init_time(); }
i }

Figure 5: A concrete example of peripheral transplantation.

Decompress Identify Generate Rehostable
Firmware —| Linux > ECMO —> ECMO > Linux
Kernel Pointers Drivers Kernel
Figure 6: The work flow of our system.
1 Assembly code:
2 mov ro, #0
3 str ro, [r2], #4
4 str ro, [r2], #4
5 str ro, [r2], #4
6 str ro, [r2], #4
7 cmp r2, r3
8 blo 1b
9 tst r4, #1
10 bic r4, r4, #1
11 blne cache_on
12 mov r@, r4 //r0 stores the value of output_start
13 mov r1, sp
14 add r2, sp, #0x10000
15 mov r3, r7
16 bl decompress_kernel
17 // we can dump the decompressed Linux kernel
18 // after function decompress_kernel returns
19
20 Simplified C code:
21 void decompress_kernel(uint32 output_start, args)

Figure 7: The assembly code that invokes function decom-
press_kernel, which is in arch/arm/boot/compressed/head.S.

By doing so, we can automatically retrieve decompressed Linux
kernels from firmware images.

4.2 Identity ECMO Pointers

Our system needs to obtain the addresses of two essential types
of functions in the Linux kernel. Specifically, the ECMO Forward
Pointers contain the functions that are used by the Linux kernel to
initialize device drivers. We dynamically hook and redirect them
to ECMO Drivers at runtime in QEMU. The ECMO Backward Point-
ers contain the APIs that are used by the ECMO Driver to invoke
functions provided by the Linux kernel to interact with emulated
peripherals in QEMU.

Precisely identifying ECMO Pointers is not easy. The main chal-
lenge is the decompressed Linux kernel is stripped and only con-
tains the binary data. It has neither meaningful headers nor debug-
ging symbols and contains thousands of functions. Furthermore,
the Linux kernel is compiled with different compilers and compiling
options, which can result in different binaries. Thus, we cannot have
any assumption on the compiling options or compilers. We also
cannot rely on run-time symbol tables like /proc/kallsym because
they are only available after booting. However, we have the insight
that embedded Linux kernels are usually modified based on the
mainstream Linux kernel and the modification mainly aims to add
support for specific peripherals with board-specific code. Meanwhile,
ECMO Pointers are functions in architecture independent code or
architecture dependent code (Section 2.1), which is unchanged and
open-source.

In this case, we can automatically identify ECMO Pointers by
leveraging the source code of the mainline Linux kernel. For in-
stance, if we find that a function uses a specific string by reading
the source code, then we can easily identify this function inside
the binary by locating the function that has references to the same
string. Of course, this simple strategy may not always work, since
some functions do not have such obvious patterns or multiple func-
tions can refer to the same string. Thus, we take three different
strategies to identify ECMO Pointers (Section 4.2.2). We illustrate
each step in the following.

4.2.1 Disassemble the Linux Kernel. The first step is to disassemble
the Linux kernel for further analysis, including constructing the
control flow graph and identifying function boundaries. Accurately
disassembling the ARM binaries is still challenging, especially when
the binary is stripped [46]. This is because inline data is very com-
mon in ARM binaries and there are two different instruction sets
(i.e., ARM and Thumb). Furthermore, ARM does not have a distin-
guished function call instruction, which can influence the accuracy
of identifying function boundaries. In this case, we choose to en-
sure that this step does not introduce false negatives, i.e., all the
code sections should be dissembled. Otherwise, we cannot identify
the functions if they are not correctly disassembled. However, we
can tolerate the false positives, i.e., the inline data may be wrongly
disassembled as code. The strategies described in Section 4.2.2 can
help us to filter out these false positives.



After disassembling the Linux kernel and constructing the con-
trol flow graphs, we further locate function boundaries by combin-
ing the algorithm introduced in Nucleus [23] and angr [1]. Nucleus
can identify the functions indirectly called while angr locates the
function according to the prologue. These two tools can help to
reduce the false negatives and guarantee that the required function
addresses (ECMO Pointers) will be located during the disassembly
process. Finally, we build a mapping for each function and various
types of information, e.g., number of basic blocks, string references,
number of called functions and etc. This mapping describes the
signature (or portrait) of each function. Note that, our system does
not require that the constructed control flow graphs are sound
or complete, as long as they can provide enough information for
further analysis (Section 4.2.2).

Algorithm 1: The algorithm to identify the addresses of
ECMO pointers from the Linux kernel binary.

Input: The decompressed Linux kernel LK B;

The source code of ECMO Pointers SC (architecture independent code or
architecture dependent code);

Output: The addresses of ECMO Pointers FA;

1 Function Identify(LKB,SC):

2 CFG = Disassembly(LK B)

3 Generated_Functions = GenerateFunctions(CFG)

4 for S_F inSC do

5 for G_F in Generated_Functions do

6 for Filtering Strategy in Filtering_strategies do
7 if Filtering Strategy(S_F,G_F) then

8 L Append G_F to S_F.Candidates

9 for S_F inSC do

10 if Length(S_F.Candidates) == 1then
11 L FA[S_F] =S_F.Candidates
12 | return FA

4.2.2  ldentify Pointer Addresses. Algorithm 1 describes the process
to locate pointer addresses of ECMO Pointers in the decompressed
Linux kernel binary, i.e., LKB. Note that, we first need to get the
source code of the functions, i.e., SC, inside the mainline Linux
kernel. The outputs of this algorithm are the addresses of ECMO
Pointers, i.e., FA (line 12).

First, we disassemble the decompressed Linux kernel, construct
the control flow graph (line 2) and generate function boundaries
(line 3). Then for the source code function of each ECMO Pointer
(line 4), we loop through the generated functions (line 5) and apply
different filtering strategies (line 6). If one filtering strategy can
identify one address as a candidate address of the ECMO Pointer
(line 7), this address will be appended to the candidate list (line 8).
Finally, we check the candidates of each ECMO Pointer (line 9). If
there is only one candidate (line 10), it means the address of this
ECMO Pointer is successfully identified in the kernel binary (line
11). Note that even if there is more than one candidate for each
ECMO Pointer, ECMO can automatically try all the candidates and
the one that can rehost the Linux kernel should be the right one.
We do not find such cases in our experiments.

Strategy-I: Lexical information The first strategy uses the lex-
ical information inside a function as its signature, e.g., a specific

Assembly: foo

Code: foo (args)
foo_offset+0x0: {

Idr r0, [pc, #248]-|

foo_offset+0x100 : foo_offset+0x200—| print_func (“This is specific string ");

foo_offset+0x200: This is specific string | |}

(a) Specific constant string: the constant string is referenced by a data pointer (i.e.,
foo_offset+0x200).

File: /path/to/source.c
Idr r0, [pc, #248 Code: foo (args)
mov rl, #386 {

bl warn_func

Assembly: foo

foo_offset+0x0:
foo_offset+0x4:
foo_offset+0x8:

V WARN_ON (condition); /*Line 386/
foo_offset+0x100: 0x00000200 —I

V =

foo_offset+0x200: /path/to/source.c

(b) Warning information: line number (i.e., 386) is the operand of assembly code; file
name (i.e., /path/to/source.c) is a constant string.

Figure 8: Strategy-I: Lexical information

constant string and the warning information. If the function we
want to identify has such strings, we can then lookup the disassem-
bly code to find the functions that have data references to the same
string. The line number and file name in the warning information
can further help to locate the function.

Fig. 8(a) shows a pair of the disassembled code and the source
code in the mainline Linux kernel. In the source code, the function
foo contains a specific constant string “This is a specific siring".
In the assembly code, the instruction at foo_offset+0x0 will load
the data pointers (i.e., foo_offset+0x100) using the LDR instruction.
The data pointer refers to another pointer (i.e., foo_offset+0x200),
which contains the same constant string. Based on this, we can
locate function foo in the disassembled kernel. Fig. 8(b) shows a
similar example with the warning information. The WARN_ON
will call function warn_func. The first parameter is the filename,
which is a specific constant string. The second parameter is the
line number of WARN_ON. Usually, the line number is hard coded
as an operand of instruction after compilation. Thus, functions
containing specific constant strings or warning information can be
easily identified.

Strategy-II: Function relationship The second strategy uses
the relationship between functions. That’s because functions that
do not contain specific strings cannot be identified by the strategy-I.
However, we can use the relationship between the functions we
want to identify and the ones that have been identified using the
previous strategy. For instance, if we have identified the function
(Identified_foo) and this function is only invoked by the function
Required_foo, then we can easily locate the Required_foo by find-
ing the caller of the Identified_foo function (Figure 9(a)). Similar
strategies can be applied to the callee and sibling relationship, as
shown in Figure 9(b) and Figure 9(c), respectively. Note that we do
not need to have a precise call graph, which is hard to generate due
to the indirect call and inline function. This is because strategy I
can identify several functions due to the many specific constant



Code: Required_foo(args)
{

Assembly: Required_foo

foo_offset+0x0:  Assembly Code s
. Identified_foo();
foo_offset+0x100: bl Identified_foo ) e

(a) Caller relationship: Required_foo is the caller of Identified_foo

Code: Identified_foo(args)

Assembly: Identified_foo ;

foo_offset+0x0:  Assembly Code cee
. Required_foo();
foo_offset+0x100: bl Required_foo \ cee

(b) Callee relationship: Required_foo is the callee of Identified_foo

Code: foo(args)

Assembly: foo ‘

foo_offset+0x0:  Assembly Code eee
. Identified_foo();
foo_offset+0x100: bl Identified_foo e
o Required_foo();
foo_offset+0x200: bl Required_foo \ e

(c) Sibling relationship: Required_foo and Identified_foo are both called by foo

Figure 9: Strategy-II: Function relationship

strings in the Linux kernel. Only if one of the functions identified
by Strategy I (Identified_foo) has certain function relationships
with the target function (Required_foo), strategy II can work. We
do not encounter this issue in our experiments. With the help of
function relationship, we can identify the functions indirectly.

Strategy-III: : Function structure If one function has more
than one caller, callee or sibling, it cannot be located solely us-
ing the function relationship. The third strategy takes the function
structure, including logic or arithmetic operations, return value, the
number of basic blocks, and the number of callee functions. Fig. 10(a)
shows the example that the function performs the logic operation on
some specific values (i.e., a = a|0x300) and return a specific value
(i.e., -22) , the compiler will generate the instructions that con-
tain the specific values (e.g., orr r0,r0, #0x300, mvn r0,#0x15).
Besides, the callee number and basic block number will also be
considered to filter out the candidate. Fig. 10(b) shows that function
foo has two callees (i.e., callee_foo_one and callee_foo_two), which
map to two instructions at foo_offset+0x18 and foo_offset+0x1c.
Basic block number works with the same rule.

Summary With the above three strategies, we can automatically
and successfully identify ECMO Pointers for all the Linux kernels
(815 ones in 20 kernel versions) used in the evaluation (Section 5.2).

4.3 Generate ECMO Drivers

The process to generate ECMO Drivers is similar with developing a
kernel module. However, we need to make the driver self-contained
as much as possible and invoke the APIs in the Linux kernel through
ECMO Backward Pointers. In particular, we compile the source code
into an object file (i.e., ECMO_Driver.o). To make this driver work,
we need to setup the base address and fix up the function calls to
ECMO Backward Pointers. Moreover, we need to ensure that this

Assembly: foo

Code: foo(args)
foo_offset+0x0: {

Assembly Code

cee Int a;
foo_offset+0x204: orr r0,r0, #0x300 a=a| 0x300;
foo_offset+0x240: mvn r0,#0x15 return -22;

foo_offset+0x244: 1dmfd sp,{pc} }

(a) Logic operation: The constants (i.e., 0x300, -22) of logic operation or return value
in source code map to the operands in assembly code.

Assembly: foo
foo_offset+0x0:

Code: foo(args)
mov r0, 0 {
inta=0;

callee_foo_one(args);
callee_foo_two(args);

foo_offset+0x18: bl callee_foo_one
foo_offset+0x1c: bl callee foo_two
foo_offset+0x20: cmp r0, 0

foo_offset+0x24:  beq foo_offset+0x50+ if (condition)

{

v a=atl;

}
foo_offset+0x28: add r0,r0,1 else
foo_offset+0x2c:  Idm sp,{r0,pc} {

«| !

foo_offset+0x50:
foo_offset+0x54:

(b) Callee Number: The two callee functions (i.e., callee_foo_one, callee_foo_two)
map to the two bl instruction at offset foo_offset+0x18 and foo_offset+0x1c. Basic
Block Number: The three basic blocks in source code maps to three basic blocks in
assembly code.

Figure 10: Strategy-III: Function structure

1 0x10000: ldr r3, [pc, #72]
2 0x10004: blx r3
3 0x10050: "Pointer value of called function"

Figure 11: ECMO Driver indirectly invokes functions in Linux
kernel. In offset 0x10000, the memory address pointed by
[pc, #72] is 0x10000 + 8 + 72 = 0x10050. In this case, functions
with arbitrary address can be invoked.

driver does not occupy the physical memory region that the kernel
can perceive, which is achieved by allocating the opaque memory.

Fixup the driver Note that the compiled object file’s base ad-
dress is 0x0. Given a new load address at runtime, our system
calculates new values of the data pointers and function pointers
and automatically rewrites the corresponding values in the driver.
Furthermore, due to the limitation of the jump range for the
BL Label instruction, the driver may not be able to invoke the
functions (ECMO Backward Pointers) in the original Linux kernel
with direct calls, if the offset between them is far from the range
of the BL instruction. To make it work, we rewrite the direct calls
with indirect calls. For example, Fig. 11 shows a code snippet of
the assembly code. At the offset 0x10000, it loads the value stored
at the offset 0x10050 into the register R3, which is the jump target.
We can rewrite the value in the offset 0x10050 to invoke arbitrary
function (ECMO Backward Pointers) in the Linux kernel, without
being limited by the direct call.
Allocate the opaque memory The ECMO Driver is loaded into
the memory for execution. However, if we directly inject the driver
into the free physical memory pages, the pages could be allocated
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Figure 12: The overall design of opaque memory.

for other purposes. This is because the kernel does not explicitly
know the existence of the ECMO Driver and it is hard to change
the allocated physical memory pages due to the complex memory
management strategy of Linux kernel. In this case, the ECMO driver
may be overwritten and the functionality cannot be guaranteed.
Thus, we need to ensure that the driver should reside inside a
memory region that cannot be affected by the Linux kernel.

To solve this problem, we propose the concept of opaque memory,
a memory region that is not perceived by the Linux kernel but can
be used at runtime. We implement the opaque memory by hooking
the emulated MMU in QEMU. Fig. 12 shows how opaque memory
works. Specifically, the emulated MMU walks through the page table
to translate virtual addresses to physical addresses. ECMO changes
the MMU module in QEMU to check whether the virtual address
being translated is in the region of the opaque memory. If so, it will
walk through our hijacked page table for the opaque memory to get
the physical address. Otherwise, the original kernel page tables will
be used. We ensure that the virtual address in the opaque memory
always has a valid entry in the page table. By doing so, the ECMO
Driver can be loaded and executed in the opaque memory, without
affecting the memory view of the rehosted Linux kernel. By default,
we set the opaque memory starting from 0xd0008000 and the length
is 0x10000. Meanwhile, we check whether the address conflicts with
the one allocated by Linux kernel. If so, we will change the start
address.

4.4 Implementation Details

We implement ECMO based on LuaQEMU [11]. LuaQEMU is a dy-
namic analysis framework based on QEMU and it exposes several
QEMU-internal APIs to LuaJIT [10] core, which is injected into
QEMU. We port LuaQEMU based on old QEMU (version 2.9.50) to
support the QEMU in new version (4.0.0) and expose more desig-
nated APIs for initializing the peripheral models. With LuaQEMU,
we are able to hijack the execution process of rehosted Linux ker-
nel at runtime and manipulate the machine states, e.g., accessing
registers and memory regions, through Lua scripts, at specified
breakpoints. For example, we can specify a breakpoint at any par-
ticular address. Inside the breakpoint, we can execute our own Lua
script for different purposes. This eases the implementation of the
opaque memory, dumping the decompressed Linux kernel, and
installing the ECMO Pointers.

The module to identify ECMO Pointers (Section 4.2) is imple-
mented in Python. We utilize Capstone [3] to disassemble the de-
compressed Linux kernel. For the function identification, we re-
implement the algorithm described in Nucleus [23] and angr [1]

in Python. We further extract the required function information,
which is the function signature based on the generated functions
and their control flow graphs. Finally, we integrate all these code
with our strategies for identifying ECMO Pointers, which takes
2290 lines of Python code. All the above mentioned procedures
can be done automatically except that the ECMO Driver, which
consists of the drivers of transplanted peripherals. It is developed
using the C language manually, which takes less than 600 lines of
code, and cross-compiled by GCC. Note that it is a one-time effort
to develop the ECMO Driver (Section 6). One ECMO Driver can be
used by different Linux kernel versions if the related functions and
structures are not changed.

5 EVALUATION

In this section, we present the evaluation result of our system. Note

that, the main purpose of our work is to rehost Linux kernels in

QEMU so that we can build different dynamic analysis applications

and install drivers for more peripherals. In the following, we first

introduce the dataset of firmware images used in the evaluation

and then answer the following research questions.

e RQ1: Is ECMO able to identify ECMO Pointers?

e RQ2: Is ECMO able to rehost the Linux kernels of embedded
devices with different kernel versions and device models?

e RQ3: Are the rehosted Linux kernels stable and reliable?

e RQ4: Can ECMO support more peripherals and be used to de-
velop dynamic analysis applications?

5.1 Dataset

As our system targets embedded Linux kernels, we have collected
the firmware images from both third-party projects (i.e., Open-
WRT [13]) and device vendors (i.e., Netgear [12]). Our evaluation
targets Linux kernels in ARM devices, since they are the popular
CPU architectures in embedded devices [17]. However, the overall
methodology can also be applied to other architectures (e.g., MIPS).

During the experiment, we focuses on transplanting three early-
boot peripherals, i.e., interrupt controller (IC), timer, and UART,
which are required to boot a Linux kernel. Once the Linux kernel is
rehosted, we can install different peripheral drivers to support other
peripherals with kernel modules. Specifically, we use the PrimeCell
Vectored Interrupt Controller (PL190) [14] and ARM Dual-Timer
Module (SP804) [2]. We use the ns16550 UART device in our system.
In total, we evaluate 815 (720 in OpenWRT and 95 in Netgear)
firmware images that contain Linux kernels.

5.2 Identify ECMO Pointers (RQ1)

ECMO Pointers are important to peripheral transplantation. In
this section, we evaluate the success rate of identifying ECMO
Pointers. Among all the 815 Linux kernels, there are 20 different
kernel versions.

Table 1 lists the required ECMO Pointers, the strategies we
used, and the Linux kernel versions that these ECMO Pointers
are used. In total, we need to identify 24 different ECMO Point-
ers for all the 20 Linux kernel versions. Among them, two (i.e.,
mach_desc->init_time, and mach_desc->init_irq ) are data point-
ers. Identifying the data pointers is rather more difficult than the
function pointers as we need to identify symbols in each function



Table 1: The ECMO Pointers, identification strategy, and the
Linux kernel versions that the ECMO pointers used by.

Forward Pointers Strategy Kernel Version
mach_desc->init_irq 1 ALL
mach_desc->init_time 1 ALL
Backward Pointers Strategy Kernel Version
irq_set_chip_and_handler_name I 3.18.x/4.4.x/4.14.x
irq_set_chip_data I ALL
handle_level irq )i ALL
__handle_domain_irq I 3.18.x/4.4.x/4.14.x
setup_machine_fdt 1 3.18.x/4.4.x/4.14.x
set_handle_irq I 3.18.x/4.4.x/4.14.x
irq_domain_add_simple I 3.18.x/4.4.x/4.14.x
irq_create_mapping I 3.18.x/4.4.x/4.14.x
of_find_node_by_path I 3.18.x/4.4.x/4.14.x
setup_irq I ALL
clockevents_config_and_register I 3.18.x/4.4.x/4.14.x
irq_domain_xlate_onetwocell 1 3.18.x/4.4.x/4.14.x
clockevent_delta2ns 1 2.6.x
clockevents_register_device )il 2.6.x
set_irq_flags I 2.6.x/3.18.x
set_irq_chip I 2.6.x
irq_to_desc )i 2.6.X
__do_dive4 )il 2.6.x
platform_device_register I ALL
lookup_machine_type I 2.6.x
_set_irq_handler 1 2.6.x
irq_modify_status I 4.4.x/4.14.x

Table 2: The decompressed Linux kernel size and the disas-
sembled function numbers for our dataset.

Maximum Minimum Mean Median
Size (Bytes) 8,526,240 4,134,392 7,297,977 8,478,848
Functions (¥#) 48,412 18,455 29,910 23,872

and infer the right ones. Fortunately, these two data pointers are the
return values of setup_machine_fdt and lookup_machine_type, re-
spectively. According to the ARM calling convention, the return
value is saved in register RO. In this case, we can identify these two
data pointers by identifying function pointers setup_machine_fdt
and lookup_machine_type.

Identifying ECMO Pointers requires us to disassemble the de-
compressed Linux kernel. Table 2 lists the information of these
kernels. The decompressed Linux kernel is about 730k bytes on
average, with thousands of functions. Among these functions, we
successfully identify the required ECMO Pointers for all Linux
kernels.

Answer to RQ1: ECMO can identify all the required ECMO
Pointers from thousands of functions inside decompressed
Linux kernel.

5.3 Rehost Linux Kernels (RQ2)

In this section, we evaluate the capabilities of ECMO on rehosting
the Linux kernels. During this process, we use our system to boot
the kernel and provide a root file system (rootfs) in the format of
ramfs. We use our own rootfs because we can include different
benchmark applications into the rootfs to conduct security analysis.
For example, we include PoCs of kernel exploits to conduct the root
cause analysis (Section 5.5). Furthermore, we can include different
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Figure 13: Supported Vendors of OpenWRT Linux Kernels.

peripheral drivers to support more peripherals. The rootfs extracted
from the firmware image can also be used.

5.3.1 Firmware Images from Third Party Projects. Table 3 shows the
overall result and the success rate of peripheral transplantation and
kernel rehosting for OpenWRT. We define the success of periph-
eral transplantation as that the transplanted IC, timer and UART
devices function well in the kernel. If the rehosted kernel enters
into the user-space and spawns a shell, we treat it as a successful
kernel rehosting. In total, we download 902 firmware images from
OpenWRT. However, four images’ formats are not supported by
Binwalk and the Linux kernel cannot be extracted (if there is). For
the left 898 firmware images, 720 of them contain Linux kernels
while the left ones contain only user-level applications. The 720
ones will be evaluated by ECMO.

Linux Kernel Versions The kernels in the 720 OpenWRT firm-
ware images consist of 19 different kernel versions. Our evaluation
shows that we can transplant the peripherals for all the 720 Linux
kernels. However, some Linux kernels cannot be booted. This is
because they cannot recognize our pre-built root file system (in
the ramfs file format) as the support of ramfs is not enabled when
being built. Without the root file system, we cannot launch the
shell. However, all of them enter into the function (i.e., init_post)
to execute the init program. In summary, among 720 kernels, our
system can rehost 624 of them, which is shown in Table 3.

Vendors and Device Models As the OpenWRT project supports
devices from multiple vendors, we calculate the supported vendors
and there are 24 different vendors. Figure 13 shows the result of
the top five vendors, i.e., Netgear, Asus, Pogoplug, Buffalo, and
Linksys, in the OpenWRT dataset. Among them, Pogoplug has a
relatively low success rate of rehosting. That’s because most kernels
from that vendor cannot recognize our pre-built root file system.
We also count the number of device models for the successfully
rehosted Linux kernels. In total, 32 device models are identified.

5.3.2  Firmware Images from Official Vendors. Besides third-party
firmware images, we also apply ECMO on the official images re-
leased by Netgear. We collect the firmware images for five popular
devices, including R6250, R6300v2, R6400, R6700, R6900, from the
vendor’s website [12]. In total, we manage to collect 95 firmware
images, and the latest one is released on 2020-09-30. Table 4 shows
the result. We noticed that all the Linux kernels of these devices are
in the version 2.6.36. We can successfully transplant the peripherals
to all the 95 different firmware images. Among them, we can launch



Table 3: The overall result of ECMO on rehosting the Linux kernel of OpenWRT. "Downloaded Images" represents the number
of downloaded images. "Format Supported" represents the number of images whose formats are supported by firmware ex-
traction tool (i.e., Binwalk). "Kernel Extracted" represents the number of images extracted from the downloaded image, which
are rehosted by ECMO. "Peripherals Transplanted" represents the number of the images that peripheral can be transplanted
successfully (e.g., IC can handler the interrupt well). "Ramfs are not Mounted" represents the number of images that cannot
mount the given ramfs. "Shell"” represents the images that we can rehost and spawn a shell. Success Rate of Transplantation =
(Peripherals Transplanted)/(Images); Success Rate of Rehosting = (Shell)/(Images).

Peripherals Success Rate of Ramfs are Success Rate of

Kernel Version ~ Downloaded Images ~ Format Supported  Kernel Extracted Shell
Transplanted — Transplantation  not Mounted Rehosting
3.18.20 23 23 21 21 100% 8 13 61.9%
3.18.23 29 29 29 29 100% 8 21 72.4%
4.4.42 37 37 37 37 100% 8 29 78.4%
4.4.47 37 37 37 37 100% 8 29 78.4%
4.4.50 45 45 45 45 100% 16 29 64.4%
4.4.61 39 39 37 37 100% 8 29 78.4%
4.4.71 40 40 38 38 100% 8 30 78.9%
4.4.89 40 40 38 38 100% 8 30 78.9%
4.4.92 41 41 38 38 100% 8 30 78.9%
4.4.140 41 41 38 38 100% 8 30 78.9%
4.4.153 40 38 38 38 100% 8 30 78.9%
4.4.182 40 38 38 38 100% 8 30 78.9%
4.14.54 54 54 42 42 100% 0 42 100%
4.14.63 66 66 42 42 100% 0 42 100%
4.14.95 66 66 42 42 100% 0 42 100%
4.14.128 66 66 42 42 100% 0 42 100%
4.14.131 66 66 42 42 100% 0 42 100%
4.14.151 66 66 42 42 100% 0 42 100%
4.14.162 66 66 42 42 100% 0 42 100%
Overall 902 898 720 720 100% 96 624 86.7%

Table 4: The overall result of ECMO on rehosting the Linux
kernel of Netgear Devices.

Device Name  Kernel Version Images # of Peripherals Transplanted  Shell

R6250 2.6.36 21 21 15
R6300v2 2.6.36 22 22 19
R6400 2.6.36 20 20 20
R6700 2.6.36 16 16 16
R6900 2.6.36 16 16 16
Overall - 95 95 86

the shell for 86 images while the left 9 cannot be rehosted due to
the same root file system problem.

Answer to RQ2: ECMO can rehost the Linux kernel of em-
bedded devices from 20 kernel versions and 37 (32 in Open-
WRT and 5 in Netgear) device models. Peripherals can be
transplanted to all the Linux kernels while 87.1% (710/815)
Linux kernels can be successfully rehosted (i.e., launch the
shell).

5.4 Reliability and Stability (RQ3)

We use the LTP (Linux Test Project [8]) testsuite to evaluate the
reliability and stability of the rehosted kernel. In total, there are

Table 5: The category of the failed syscall test cases. After
installing the peripheral driver for Ethernet device, the 15
failed cases due to the network are passed and the total
failed ones will decrease from 66 to 51.

Category of Failed cases Number
Testing the bug or vulnerability of Linux kernel 16
Network is not enabled (15)
The function is not implemented 25
Others 10
Total 66 (51)

1, 257 test cases for system calls. Among them, 148 are skipped as
the testing environment (e.g., the CPU architecture and the build
configuration) does not meet the requirement. For the left 1, 109
test cases, 1,043 passed while the left 66 ones failed.

We further analyze the reason for the failed test cases. Table 5
lists the category of the reason. Among them, 15 cases are due to
the lack of network devices. This is expected since our system does
not add the support of network device initially. However, all the
15 test cases are passed after installing the Ethernet device driver
with kernel modules on the rehosted Linux kernel (Section 5.5.1).
Also, 16 cases aim to test whether the Linux kernel fixes a bug or
vulnerability. For instance, the test case (timer_create03 [9]) is to



[<c022¢cfd0>] (__alloc_skb) from [<c022d170>]
[<c022d110>] (alloc_skb_with_frags) from [<c0227cb0>]
[<c0227b04>] (sock_alloc_send_pskb) from [<c02bb540>]
[<c02bb3cc>] (unix_stream_sendmsg) from [<c02242ec>]

Callstack
0xc02bb4cc LDR sb, [r2, #0xd0]
ECMO r2+0xd0: 0xc7929110
"""""" GDB 0xc7929110: 0xffffff00
/*load 0xffffff00 from address 0xc7929110%/

—————— -------..__Watchpoint

sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
sk->sk_sndbuf = max_t(u32, val * 2,
SOCK_MIN_SNDBUF); -

Source Code

|:i> 0xc0227cac BL 0xc022d110

Trace

r'/42/1<li;cr‘_isrkb_with_frags 4—
0xc022d16¢ BL 0xc022cfd0(__alloc_skb)
/*crash in function __alloc_skb*/

ock_alloc_send_pskh — ~<——

r0: Oxffffff40

" unix_stream_sendmsg

i 0xc02bb53c BL 0xc0227b04
S 1:0xffffff40 /*calculated from Oxffffff0

’ sock_setsockopt
0xc0229f68 STR r6, [rd4, #0xd0]
r4+0xd0: 0xc7929110

Figure 14: Root cause analysis of CVE-2016-9793.

check whether CVE-2017-18344 [5] is fixed. If the vulnerability is
not fixed, the test case will fail. They are also expected since the
testing kernel does not fix these vulnerabilities. The other 25 cases
return back the ENOSYS error number, which means the functionali-
ties are not implemented. For the remaining 10 cases, the reason is
adhoc, such as the kernel version is old and timeout.

In summary, 94% of the system call test cases passed. This evalu-
ation shows the rehosted kernel is reliable and stable. We further
demonstrate the usage scenarios of the rehosted Linux kernel in
Section 5.5.

Answer to RQ3: The rehosted Linux kernel can pass 94%
system call test cases in LTP, which demonstrates its reliability
and stability.

5.5 Applications and Other Peripherals (RQ4)

Our system can rehost Linux kernels, which provides the capabil-
ity to install different peripheral drivers with kernel modules to
support more peripherals. Furthermore, the rehosted Linux kernel
lays the foundation of applications relying on the capability to in-
trospect the runtime states of the target system. In this section, we
successfully install the Ethernet device driver (i.e., smc91x) for all
the rehosted Linux kernels. We also leverage our system to build
three applications, including kernel crash analysis, rootkit forensic
analysis, and kernel fuzzing, to demonstrate the usage scenarios of
ECMO. Other applications that rely on QEMU can be ported. Note
that, we only use these applications to demonstrate the usage of
our system. The applications are not the main contribution of this
work.

5.5.1 Other Peripherals. Linux kernel module is an object file that
can be loaded during the runtime to extend the functionality of the
Linux kernel. In this case, peripheral drivers can be built as kernel
modules and loaded into the kernel dynamically. To demonstrate

Table 6: CVEs that can be triggered on the rehosted Linux
kernel by ECMO.

CVE ID CVE Score CVE Type Fix Version
CVE-2018-5333 5.5 Null Pointer Dereference 4.14.13
CVE-2016-4557 7.8 Double Free 455
CVE-2017-10661 7.0 Race Condition 4.10.15
CVE-2016-0728 7.8 Interger Overflow 441
CVE-2016-9793 7.8 Type Confusion 4.8.14
CVE-2017-12193 5.5 Null Pointer Dereference 4.13.11

that our rehosted Linux kernel is able to support more peripherals.
we select one rather complex peripheral (i.e., smc91x [18]) and build
the driver code into kernel module (i.e., smc91x.ko). We then inject
this kernel module into the ramfs that is fed to rehosted Linux
kernel. After the embedded Linux kernel is rehosted by ECMO, we
use the command insmod smc91x.ko to install the peripheral driver
for smc91x. Meanwhile, QEMU has already provided the peripheral
model for smc91x and we can integrate this model into the machine
model directly. Finally, we successfully install the peripheral driver
of smc91x for all the 710 rehosted Linux kernels, which demonstrate
the capability of ECMO to support the other peripherals.

5.5.2  Crash Analysis. In the following, we show the process to
utilize ECMO to understand the root cause of the crash on rehosted
kernels. To this end, we collect the PoCs that can trigger the crash
for six reported bugs and vulnerabilities (as shown in Table 6). We
then boot the Linux kernel and run the PoCs to crash the kernel.
During this process, we use the QEMU to collect the runtime trace.
We also leverage the remote GDB in QEMU to debug the rehosted
kernel. We detail the procedures on how to conduct the crash anal-
ysis for one case (CVE-2016-9793 [4]) with the collected runtime
trace. Figure 14 shows the whole procedure.

Specifically, when the rehosted Linux kernel crashes, the detailed
call stack will be printed out. The call stack includes the function
name and the addresses of these functions. With the runtime trace



provided by QEMU, we can get the information including the reg-
ister values and the execution path. By analyzing the trace, we
noticed that a negative value (i.e., 0xf£££££40) is the first parame-
ter of the function __alloc_skb. This negative value results in the
crash.

We then analyze the propagation of this negative value within the
trace. This value is propagated by the first parameter of the function
sock_alloc_send_pskb. Finally, we notice that the negative value
0xff££££40 is calculated from 0xf£££££00, which is loaded by the
function unix_stream_sendmsg from the address 0xc7929110. We
then use the GDB to set a watchpoint at this memory address and
capture that the instruction at the address 0xc0229£68 was writing
the negative value (i.e., 0xf£££££00 ) into this memory location.

We further analyze the function that contains the instruction at
the address 0xc0229£68. It turns out that the root cause of the crash
is because of the type confusion. In the function sock_setsockopt,
the variable sk—sk_sndbuf will be set by the return value of max_t
(maximum value between two values in the same type). However,
due to the wrong type u32, the return value can be a negative value,
which triggers the crash.

This analysis shows the usage of ECMO by providing the capa-
bility introspect the runtime states of the rehosted kernel.

5.5.3  Rootkit Forensic Analysis. Rootkit forensic analysis requires
the ability to monitor the runtime states of the kernel [40, 48]. We
demonstrate this ability by conducting the rootkit forensic analysis
with one (i.e., Suterusu [20]) popular rootkit in the wild.

Specifically, Suterusu is able to hide specific processes by hi-
jacking the kernel function proc_readdir, which is used to get
the process information. As shown in Figure 15(a), it hijacks the
function proc_readdir by rewriting the function’s first instruction
to LDR PC, [PC,#0]. As a result, it redirects the execution to the
function new_proc_readdir inside the rootkit. With ECMO, we can
monitor the changes to the kernel code sections (a suspicious behav-
ior) by setting up memory watchpoints to the Linux code section
(Figure 15(b)).

5.5.4  Fuzzing. Fuzzing has been widely used to detect software
vulnerabilities. We ported one of the most popular kernel fuzzers
(i.e.,UnicornFuzz [51]) into ECMO and fuzzed the example kernel
modules provided by UnicornFuzz. UnicornFuzz can work under
ECMO and the fuzzing speed can reach to 396 instances per second.
This demonstrates the usage of ECMO for kernel fuzzing.

Answer to RQ4: Applications, e.g., crash analysis, forensic
analysis, kernel fuzzing, can be built upon the rehosted Linux
kernel by our system. Furthermore, rehosted Linux kernel
can install peripheral drivers with kernel modules to support
more peripherals.

6 DISCUSSION

Manual efforts ECMO provides mostly automated approach and
only developing the ECMO Driver requires manual efforts. However,
this is a one-time effort. Furthermore, one ECMO Driver can be
transplanted to different kernel versions if the related functions
and structures are not changed. Even if the functions are changed,
we just need to change a few APIs and compile it again to create a

Rootkit

Linux Kernel
hijack_proc
Rewriting

> LDR PC, [PC,#0]

(a) Workflow of rootkit Suterusu

¢
Continuing.

Hardware watchpoint 1: *0xc00fc078

0Old value = 0xe92d4038
New value = 0xe59ff000
0xbf00116¢ in ?? () LDR PC,[PC, #0]

(b) ECMO observes how the rootkit Suterusu works.

Figure 15: The workflow of rootkit Suterusu and how ECMO
analyzes the behavior

new ECMO Driver. For example, the 815 Linux kernels consist of 20
different kernel versions. For the kernel in version 2.6.36, it takes
385 lines of C code. This driver can be used for all the kernel images
of Netgear (Table 4). For the kernel in version 3.18.20 and 3.18.23,
it takes 534 lines of C code while 180 lines of new code are added.
For kernels in all the left 17 versions, they share the same driver
code. 60 lines of new code are added compared with the one used in
3.18.20. Note that the driver code for the transplanted peripherals
does not need to be developed. Instead, we reuse the existing code.
For example, the driver code for VIC (PL190) is open source [15].
Thus, we just reuse the existing driver code, merge the driver code
into one file, and finally compile it to generate the ECMO driver. In
total, it takes less than one person-hour to build a new customized
driver.

Functionalities of peripherals We successfully boot the Linux
kernel by transplanting designated peripherals (e.g., IC, Timer, and
UART). We admit that the original peripherals may not work prop-
erty as they are not emulated (or transplanted) in QEMU. However,
the functionalities of the transplanted peripherals are guaranteed.
With the transplanted peripherals, ECMO can provide the capability
to introspect the runtime states of the Linux kernel that dynamic
analysis applications can be built upon. Without our system, it’s
impossible to build such applications since the target Linux kernel
cannot be booted in QEMU. The three applications used in the
evaluation have demonstrated the usage scenarios of our system.
We may build or port more complicated applications, e.g., dynamic
taint analysis [60], to further evaluate our system.

Other peripherals Currently, ECMO is evaluated based on trans-
planting three early-boot peripherals (i.e., IC, timer, and UART) as
they are required to boot a Linux kernel. In general, peripheral



transplantation works on all kinds of peripherals. The transplant-
ing process depends on the identification of ECMO pointers. Fortu-
nately, to support the other peripherals, users can install the kernel
modules directly on the rehosted Linux kernel, which does not
need to identify pointers. In this case, all kinds of peripherals can
be supported. Our experiments show that the driver of Ethernet
device, which is rather complex, can be successfully installed and
the network functionality can be guaranteed.

Other architectures Currently, ECMO only supports ARM ar-
chitecture, which is the most popular one in embedded systems [17].
However, the technique peripheral transplantation can be easily
extended to the other architecture as it does not rely on any particu-
lar architecture feature. Specifically, developers need to implement
the module for identifying ECMO Pointers for the new architec-
ture. This requires additional engineering efforts and algorithm 1
is provided.

7 RELATED WORK

Static Firmware Analysis Researchers apply the static analysis
technique to analyze the embedded firmware. For instance, Costin
et al. [30] conduct a large-scale analysis towards the embedded
firmware. By analyzing 32 thousand firmware images, many new
vulnerabilities are discovered, influencing 123 products.

Code similarity is widely used to study the security issue of em-
bedded devices. Feng et al. propose Genius [38], which can identify
many vulnerabilities in a short time. Considering the inaccuracy of
approximate graph-matching algorithm, Xu et al. utilize a neural
network-based approach and build a prototype named Gemini [65].
The result shows Gemini can identify more vulnerable firmware
images compared with Genius. Yaniv et al. introduce Firmup [32],
which has a relatively low false positive ratio and can discover
vulnerabilities efficiently, by considering the relationship between
procedures. In the case that firmware images are not available, Xue-
qiang et al. [63] applies cross analysis of mobile apps to detect the
vulnerable devices. Finally, 324 devices from 73 different vendors
are discovered. Our system is used to analyze the firmware images
of embedded systems with dynamic analysis. Application building
upon ECMO can complement the static analysis ones.

Dynamic Firmware Analysis Besides static analysis, researchers
propose several methods to support the dynamic firmware analysis.
Avatar [69] is proposed to support complex dynamic analysis of em-
bedded devices by orchestrating the execution of an emulator and
real hardware. Charm [62] applies a similar strategy. It introduces
the technique named remote device driver execution by forwarding
the MMIO operation to a real mobile. Avatar2 [54] extends Avatar
to support replay without real devices. However, they both suffer
from the problem of scalability. Inception [29] applies symbolic ex-
ecution based on KLEE [25] and a custom JTAG to improve testing
embedded software. However, it assumes that the source code is
available. IoTFuzzer [27] aims to fuzz the firmware from the mobile
side. However, the code coverage of firmware and the coverage of
attack surface are limited. Pretender [43] is able to conduct automat-
ically rehosting tasks. However, it replies on the debug interface of
specific devices. Jetset [49] utilizes the symbolic execution to infer
the return values of device registers. However, the functionality of

the peripherals cannot be guaranteed. Furthermore, the shell may
not be obtained for further development of different applications.

Besides, many researchers utilize the fuzzing technique to detect
the security issues of embedded firmware. P2IM [37] is proposed
to learn the model of peripherals automatically. DICE [52] focused
on the DMA controller and can extend the P2IM’s analysis cover-
age. Halucinator [28] proposed a new methodology to rehost the
firmware by abstracting the HAL functions. ECMO is different from
them in the aspects to transplant peripherals into the target kernel,
instead of inferring the peripherals models. Besides, all these sys-
tems focus on bare-metal system, which is less complicated than
the Linux kernel. Firmadyne [26] and FirmAE [50] target on Linux-
based firmware. However, they focus on the user-space program,
instead of the Linux kernel.

Applications based on QEMU There are many applications
based on QEMU. For example, researchers have developed new
fuzzing systems [21, 51, 70] based on QEMU. KVM leverages the
device emulation provided by QEMU or the virtio [58] framework
for device virtualization. The idea of virtio is similar to ECMO.
However, virtio requires to change the source code of guest while
ECMO works towards the Linux kernel binary. Virtual machine
introspection tools [24, 33, 34, 39, 40, 64], which are helpful for de-
bugging or forensic analysis, utilize QEMU to introspect the system
states. Furthermore, dynamic analysis frameworks use QEMU to
analyze malware behavior [36, 53, 57, 66—-68]. ECMO provides the
capability to rehost Linux kernels, which lays the foundation for
applying these applications on embedded Linux kernels.

8 CONCLUSION

In this work, we propose a novel technique named peripheral trans-
plantation to rehost the Linux kernel of embedded devices in QEMU.
This lays the foundation for applications that rely on the capability
of runtime state introspection. We have implemented this tech-
nique inside a prototype system called ECMO and applied it to 815
firmware images, which consist of 20 kernel versions and 37 device
models. ECMO can successfully transplant peripherals for Linux
kernels in all images. Among them, 710 kernels can be successfully
rehosted, i.e., launching the user-space shell (87.1% success rate).
Furthermore, we successfully install one Ethernet device driver
(i.e., smc91x) on all the rehosted Linux kernels to demonstrate the
capability of ECMO to support more peripherals. We further build
three applications to show the usage scenarios of ECMO.
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