
Fast, Scalable Detection of “Piggybacked” Mobile
Applications

Wu Zhou †, Yajin Zhou †, Michael Grace †, Xuxian Jiang †, and Shihong Zou ‡
†North Carolina State University ‡Beijing Univ. of Posts & Telecommunications

{wzhou2, yajin_zhou,mcgrace, xjiang4}@ncsu.edu {zoush}@bupt.edu.cn

ABSTRACT

Mobile applications (or apps) are rapidly growing in number and
variety. These apps provide useful features, but also bring certain
privacy and security risks. For example, malicious authors may
attach destructive payloads to legitimate apps to create so-called
“piggybacked” apps and advertise them in various app markets to
infect unsuspecting users. To detect them, existing approaches
typically employ pair-wise comparison, which unfortunately has
limited scalability. In this paper, we present a fast and scalable
approach to detect these apps in existing Android markets. Based
on the fact that the attached payload is not an integral part of a
given app’s primary functionality, we propose a module decoupling
technique to partition an app’s code into primary and non-primary
modules. Also, noticing that piggybacked apps share the same
primary modules as the original apps, we develop a feature finger-
print technique to extract various semantic features (from primary
modules) and convert them into feature vectors. We then construct
a metric space and propose a linearithmic search algorithm (with
O(n log n) time complexity) to efficiently and scalably detect pig-
gybacked apps. We have implemented a prototype and used it
to study 84, 767 apps collected from various Android markets in
2011. Our results show that the processing of these apps takes less
than nine hours on a single machine. In addition, among these
markets, piggybacked apps range from 0.97% to 2.7% (the official
Android Market has 1%). Further investigation shows that they
are mainly used to steal ad revenue from the original developers
and implant malicious payloads (e.g., for remote bot control).
These results demonstrate the effectiveness and scalability of our
approach.

Categories and Subject Descriptors C.4 [Perfor-
mance of Systems]: Measurement techniques; K.6.5 [Manage-

ment of Computing and Information Systems]: Security and
protection – Invasive software

General Terms Security; Algorithms; Measurement

Keywords Mobile Application; Smartphone Security; App
Repackaging; Piggybacked Application

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODASPY’13, February 18–20, 2013, San Antonio, Texas, USA.
Copyright 2013 ACM 978-1-4503-1890-7/13/02 ...$15.00.

1. INTRODUCTION
With the wide adoption of smartphones and mobile devices, mo-

bile applications (or apps) are rapidly growing in number and va-
riety. Recent statistics [6] show that since January 2012, Google’s
Android Market is home to more than 400, 000 apps for users to
browse and download. What is more, the number is increasing at
an astonishing rate: each month will see more than 20, 000 apps
being published [6]. The convenience and functionality these apps
offer greatly extend the capability and reach of mobile devices.
Unfortunately, along with the above benefits, there are undesirable
privacy risks and security issues associated with these mobile apps.
For example, malware authors may piggyback destructive payloads
on known good apps and then advertise the piggybacked apps in
various app markets to infect unsuspecting users. For ease of
presentation, we use the term carrier to refer to the original app
being piggybacked and the term rider to denote the additional code
injected into the original app. Notice that piggybacked apps are
a special kind of repackaged apps [44, 26], which are created by
modifying and re-signing legitimate apps for distribution. The
distinction however is that piggybacked apps involve injecting
(new) rider code into the original apps while repackaged apps may
only make minor modifications, including tweaking resource files
or replacing constant strings for new language support.

With the inclusion of new rider code, piggybacked apps pose
greater security threats than other kinds of repackaged apps. In fact,
a number of security alerts have been issued about the presence
of piggybacked apps in various app markets. Specifically, these
piggybacked apps embed malicious rider code into popular carrier
apps, such as games and utility programs. Once installed, the rider
code could perform a variety of malicious actions, such as sending
text messages to premium numbers [32] and converting the infected
phones into bots [31].

Recognizing these threats, researchers have explored different
ways to detect them. The App Genome Project [26] and Droid-
MOSS [44] are two representative examples. They are designed to
detect repackaged apps in general among third-party app markets –
by assuming that apps in the official Android Market are original.
This assumption is intuitive and reasonable in some aspect, but
it prevents them from detecting repackaged apps in the official
Android Market, where repackaged apps are also found in con-
siderable amount [28]. In addition, while App Genome Project
does not disclose its detection methodology, DroidMOSS uses a
fuzzy hashing technique to generate app fingerprints based on their
instruction sequences and then applies pair-wise comparison to
detect repackaged apps. Pair-wise comparison does not scale to
the large amount of apps available in modern marketplaces.

In this paper, we propose a fast and scalable approach called Pig-

gyApp to effectively detect piggybacked apps in existing Android

markets, including both official and unofficial ones. PiggyApp
meets the need for scalability and timeliness by accommodating
the fast influx of a large number of apps in existing marketplaces,
which dwarfs earlier approaches. Moreover, our system eliminates
the previous assumption by considering apps from different mar-
ketplaces in the same manner, which uniquely enables the detection
of piggybacked apps in the official Android Market (now part of
Google Play).

Our approach is based on two main observations. First, in a
piggybacked app, the rider code is relatively independent and does
not tightly interweave, if any, with the primary functionality of
the host app. Therefore, we propose a technique called module

decoupling to effectively partition the app code into primary and
non-primary modules. Each app has one unique primary module,
which mainly implements the advertised functionality. Meanwhile,
it may have a number of non-primary modules that are relatively
standalone. Various support routines or libraries, advertisement
packages, and mobile payment frameworks – as well as embedded
rider code – fall in this category.

Second, a piggybacked app typically shares the same primary
module as the original carrier app. Accordingly, we propose
another technique called feature fingerprinting to extract certain
semantic features (e.g., the requested permissions and used An-
droid APIs) embodied in the primary module. To facilitate this
comparison and meet our scalability requirements, we represent
them as feature vectors, organize these feature vectors into a metric
space, and then propose a linearithmic search algorithm (with
O(n log n) time complexity – compared to the previous O(n2)
complexity of pair-wise comparison) to detect piggybacked apps.
From these piggybacked apps, we further derive the corresponding
rider code and perform a systematic study about its functionality
and purpose.

We have implemented a proof-of-concept prototype and used it
to detect piggybacked apps in multiple Android markets world-
wide, including the official market and six alternative ones: two
from the US, two from Eastern Europe and two from China. Our
study includes 84, 767 apps and 68,187 of them come from the
official Android Market. These apps are collected by taking a snap-
shot of the available apps on these marketplaces in the first week
of March 2011. By running our system on a standalone desktop
machine (with 4 cores and 8G memory), it takes less than 9 hours to
process all of these apps, which meets our scalability and timeliness
requirements. The results show that 1.0% apps in the official
Android Market are piggybacked. For the rest alternative ones, the
piggybacked apps vary from 0.97% to 2.7%. By analyzing the
rider code, we find that its main purposes are to embed ad libraries
to steal the generated ad revenue from the original developers or to
implant malicious payloads to compromise users’ phones.

The rest of this paper is organized as follows: We describe
the system design in Section 2, followed by its prototyping and
evaluation results in Section 3. After that, we discuss the system’s
limitations and suggest possible improvements in Section 4. Lastly,
we describe related work in Section 5 and conclude in Section 6.

2. DESIGN
In Figure 1, we show the overall architecture of our system.

While piggybacked apps leverage carrier apps to entice users into
downloading and installing them, the main purpose is to execute
the attached rider code unnoticed. Notice that the rider code is
relatively independent and should not closely interweave, if any,
with the primary functionality of the carrier app. Accordingly,
we propose module decoupling to first isolate the primary modules
from existing apps. Moreover, as piggybacked apps still share the

same primary module code base as the originals, we then propose
to mainly compare primary modules to infer the piggybacking
relationship between two apps.

In our system design, there are three competing goals: scalabil-
ity, accuracy, and efficiency. Scalability is needed to accommodate
the large number of apps in existing markets; accuracy requires
our system to effectively detect piggybacked apps with few false
positives and negatives; and efficiency imposes the need for our
system to handle existing apps in a timely and resource-efficient
manner. Specifically, to meet the scalability requirement, our
system must improve upon the O(n2) time complexity of pair-
wise comparison in existing systems [44]. To this end, we develop
a feature fingerprinting technique that extracts semantic features
from the primary module, including requested permissions and
used Android APIs, and represents them as feature vectors. These
feature vectors are used to construct a metric space from which
we can efficiently identify similar apps using a linearithmic search
algorithm (O(n log n) time complexity). By further examining the
signing certificates and other non-primary modules of similar apps,
we can effectively detect piggybacked apps as well as the related
rider code.

In this work, we assume that piggybacking mainly occurs by
adding Java code to a legitimate app, instead of native code. There
are two main reasons: first, compared to native code, Java code
is typically a more vulnerable target for piggybacking. A number
of tools [40, 9] have been developed and can be readily misused
for this purpose. Second, existing apps are still primarily written in
Java, instead of C, which results in much less native code in existing
apps. Considering the dataset used in this study, we find that only
5% of all apps contain native code. In addition, we assume that
legitimate app developers do not disclose their private keys (for app
signing) to others. Therefore, piggybacked apps will not share the
same certificates as the original apps. Next, we detail each essential
component in our system.

2.1 Module Decoupling
An Android app is typically composed of multiple relatively

independent modules. The primary module implements the main
functionality, which is advertised to attract user downloads. Other
non-primary modules may serve the primary module with sup-
port routines and utility libraries, but could also be completely
independent (such as ad libraries). Within each module, either
primary or non-primary, the code is tightly coupled or organized;
between modules, the code is loosely coupled or even not related.
(Some standalone apps may only contain one module – the primary
module.) Without the access to the app’s source code, we resort
to program comprehension techniques [5] to decouple internal
modules within an app.

For a given app, our module decoupling process takes as input
its
lasses.dex file and works in two main steps. First, based
on the Dalvik bytecode, we build a program dependency graph
(PDG). Within the graph, the node represents a Java class package
that contains a number of Java class files declared within it. An
edge connects two class packages if there exists an interaction or
a dependency between these two packages. A weight is assigned
to an edge to indicate how close these two class packages are con-
nected. In our system, the edge essentially captures the following
interaction or dependency relationship: class inheritance, package
homogeny1 , method calls, and member field references. Each of
this relationship in general represents certain degree of coupling
and our system will collect it and assign a weight. As the class in-

1Two packages are homogeneous if they form a parent-child
relation or share the same parent.

Repository

App

Module Decoupling

Feature Fingerprint

Primary modules

Piggybacking
Identification

Rider Analysis

Piggybacked Apps

Rider Code
Non−primary modules

Metric
Space

vectors

feature

Figure 1: The overall system architecture

heritance relationship shows tighter coupling between two classes,
we accordingly assign a higher weight to the edge than others
that may simply indicate a single method call. Between two class
packages, we use two cumulative weight values to unidirectionally
sum all the edge weights from one to another.

Second, based on this program dependency graph, we use an
agglomerative clustering algorithm (Algorithm 1) to group these
class packages into different modules. To begin with, we initialize
a number of singleton clusters one for each class package in the
graph. After that, we repeat the process of checking whether any
two clusters can be merged and, if they can, merging the pair of
clusters that have the largest cumulative weight values. Otherwise,
we report the resulting set of clusters as the modules contained in
the app. Note the merge_able condition (line 2) in the algorithm
examines the remaining largest cumulative weight values between
any cluster pair. In our prototype, we empirically choose a cut-off
value (Section 3).

Algorithm 1 Agglomerative clustering

Input: Program dependen
y graph (PDG) of an app
Output: A list of primary and non-primary modules
1:
lusters =
reate_singleton_
lusters(PDG)
2: while merge_able(
lusters) do

3:
ompute_
oupling_between_ea
h_pair(
lusters)
4: (
1,
2) ← sele
t_the_most_
oupled_pair(
lusters)
5:
lusters ← merge(
1,
2,
lusters)
6: end while

7: return
lusters
In Figure 2, we show an example run of the clustering algorithm

on a piggybacked app (MD5: 09105460be466d0
024
37df8997b061).
Initially, it has six modules
om.re
hild.advan
edtaskkiller,
om.google.ads,
om.google.ads.util, org.json,
om.android.-root, and ja
kpal.androidterm. The figure shows the cumulative
weight values between each pair. After the run, our algorithm
effectively merges
om.google.ads and
om.google.ads.util and
reports five remaining clusters as standalone modules.

Among the reported modules, we then determine which one is
the primary module. In particular, we leverage the information
in the AndroidManifest.xml file that declares various components
of an app, including its activities, services, receivers, and con-
tent providers. Specifically, it specifies concrete classes that will
be invoked to handle certain events or actions. A special one
is ACTION.MAIN that represents the main entry point of the app.
Accordingly, we choose the module that contains this class as a
candidate for the primary module. Meanwhile, notice that the
primary module tends to provide the main interface for users to
interact with. Therefore, we also select the module with classes
that handle most activities as the primary module candidate. If
there are multiple candidates, we choose the most similar one by

com.google.ads

com.google.ads.utils

jackpal.androidterm

32

com.rechild.advancedtaskkiller com.android.root

org.json

3

4 2

m
er

ge
_a

bl
e

Figure 2: An example module decoupling run

calculating the similarity of the module name against the app name
in the manifest file. In our experiments, we do not encounter
any piggybacked apps that change the app name to a completely
unrelated one.

2.2 Feature Fingerprint and Representation
After module decoupling, we then generate feature fingerprints

for the primary module. More specifically, feature fingerprints are
supposed to distinguish the functionality of one primary module
from another. To this end, we extract various semantic features
such as the requested permissions, the Android API calls used,
involved intent types (which represent the way for inter-component
or inter-process communication), the use of native code or external
classes, as well as the authorship information (from the developer
certificates in the META-INFO directory). The intuition is that it is
rare for two different modules to be coincidentally the same in all
the above items. Notice that we include the developer information
to exclude different apps authored by the same developer as there
is no such need.

With the collected features, we then represent them into a vector
where 0 and 1 respectively represent the absence and presence of
certain feature in the primary module. After that, we organize
these feature vectors (each representing an app) into a metric space
and transform the problem of detecting piggybacked apps into a
nearest neighbor searching problem. A naive approach for nearest
neighbor searching is to perform pair-wise comparison and choose
the one with the smallest distance. Considering the number of
apps in current app markets, this approach is not scalable with its
O(n2) complexity. That is also the main reason why we choose
to construct a metric space from the extracted feature vectors.
By exploiting its triangle inequality property [43], we can effec-
tively prune irrelevant portion during the search and achieve an
O(n log n) time complexity, thus accommodating the scalability
challenge.

In the metric space construction, we use the following Jaccard
distance between the primary module features of two apps as the
distance metric:

Jaccard(FA, FB) =
|FA ∪ FB | − |FA ∩ FB|

|FA ∪ FB |
(1)

pivot

partition1

partition2

 partition3

partition4

query

q2

r2

minimum

Figure 3: Triangle inequality-based VPT pruning

where FA and FB represent the feature vector of primary module
A and B respectively. Recall that they are vectors of binary values
(0 or 1) to indicate whether one specific API call, permission,
intent type or any external code loading behaviors occur in the
module code. Formula 1 essentially calculates the ratio of disjoint
features over the union of features present in these two modules to
characterize how different they are. As shown in [41], the Jaccard
distance satisfies the property of the triangle inequality that is being
exploited to prune the irrelevant part of the search space.

In our system, we use a Vantage Point Tree (VPT) [43] to
construct the metric space. Specifically, we first select a primary
module as the root pivot P, measure the Jaccard distances betweenP and all the rest of the modules, sort these modules in an ascending
order of their distances to the pivot, and then divide them into
a fixed number N of balanced partitions, represented as Pi, i =1,2,...N. At the pivot, the distance range associated with each
partition Pi is recorded, represented as Pi.MIN and Pi.MAX.
For each partition of the pivot, we will repeat this partitioning
procedure to reduce its size to a manageable level.

To elaborate how the triangle inequality property enables effi-
cient search pruning in the constructed VPT tree, we present in
Figure 3 the partitions as concentric circles based on their distance
ranges to the pivot. For an app query, suppose we discovered
another app nearest_neighbor with the minimum distance to query.
The search space is then reduced to locate another app, say test,
whose distance to query is smaller than minimum. Due to the
triangle inequality property in Jaccard distance, we have:

distance(query, test) > |distance(query, pivot)

−distance(pivot, test)|
(2)

If |distan
e(query, pivot) - distan
e(pivot, test)| > minimum
holds for any app test inside a partition, we can safely ignore
this partition during the search. Thus we can use the following
pruning conditions to skip any irrelevant partition Pi because it is
not possible to find a shorter distance than minimum:

minimum < distance(pivot, query) − Pi.MAX (3)

minimum < Pi.MIN − distance(pivot, query) (4)

In Algorithm 2, we outline how nearest neighbor search works
in VPT. It has two inputs: the query app query and the current
root VPT node
urrentNode. During the search, we maintain two
global variables, i.e., nearest_neighbor and the current minimum
distance. If we reach a leaf node (lines 1 to 10), the algorithm

Algorithm 2 Nearest Neighbor Search in VPT:nearestNeighborSear
h(query,
urrentNode)
1: if
urrentNode is a leaf node then

2: for each app in this leaf node do

3: if app and query not from the same author then
4: if minimum > distan
e(app, query) then

5: minimum = distan
e(app, query)
6: nearest_neighbor = app
7: end if

8: end if

9: end for

10: end if

11: if
urrentNode is a pivot node then

12: if pivot and query not from the same author then
13: if minimum > distan
e(pivot, query) then
14: minimum = distan
e(pivot, query)
15: nearest_neighbor = pivot
16: end if

17: end if

18: for each partition Pi of this pivot code do

19: if minimum< distan
e(pivot, query)-Pi.MAX orminimum< Pi.MIN-distan
e(pivot, query) then
20: continue

21: end if

22: nearestNeighborSear
h(query, Pi)
23: end for

24: end if

simply computes the distances between the query app and eachapp stored in this leaf node. If any distance is smaller than cur-
rent minimum value and they are also from different developers,
we locate a closer distance and accordingly update minimum andnearest_neighbor (lines 4 to 7). If we hit a pivot node (lines11 to 24), the same procedure will be applied to the pivot app.
Moreover, we will further examine each partition of this pivot
node (line 18). If any of the pruning conditions in Formula 3
and Formula 4 are satisfied (line 19), this partition can be safely
skipped; otherwise the nearest neighbor searching procedure will
be recursively invoked on this partition (line 22). To speed up
the search, we can also initialize the minimum to a small number
that indicates the acceptable level for piggybacking detection. This
is possible because our previous module decoupling technique only
retains primary modules for comparison while removing other non-
essential ones (i.e., non-primary modules) as noise. Also, instead of
only returning one nearest_neighbor, we can adjust the algorithm
to report a list of apps that fall in a range of distance with thequery app. In either case, the algorithm has the time complexity
of O(n log n).

2.3 Piggybacking Identification and Rider Anal-
ysis

By iterating through each app collected from an app market,
our algorithm effectively reports a list of related apps which share
similar primary modules and thus are candidates for piggybacked
apps. To identify the exact piggybacking relationship, we take into
account non-primary modules of related apps. Specifically, for
each reported pair A and B, we match their non-primary modules.
If the non-primary modules of an app A are a strict sub-set of B,
any non-primary modules in B, but not in A, will be considered part
of the rider code. Accordingly, we label the app with the rider

code as the piggybacked app, and the other as the corresponding
carrier app. If both apps have non-matched modules standing out,
we choose to report them as a piggybacked pair, as we are not able
to determine which one is piggybacked.

Besides determining the piggybacking relationship, we are also
interested in what functionality is implemented in the rider code.
While manual analysis in general cannot be avoided, our investiga-
tion shows that the same rider code may be injected into multiple
piggybacked apps. Accordingly, we elect to cluster the detected
rider code and group them for correlation. By doing so, we are
able to identify several clusters whose members are very similar
to each other. In our prototype, we choose to reuse the previous
algorithm and build another VPT tree (Section 2.2) only for these
identified riders. Our experience shows that the number of rider-
related non-primary modules is one magnitude smaller than that
of apps, which allows us to select a smaller distance (as the range
parameter). As to be shown in Section 3.5, such clustering quickly
exposes several clusters with the same rider code piggybacking on
a number of carrier apps.

3. PROTOTYPING AND EVALUATION

We have implemented a prototype of PiggyApp in Linux. In our
prototype, the first component – module decoupling (Section 2.1) –
is implemented by extending the open source Dalvik disassemblerbaksmali [3] (with an additional 1926 lines of Java code) to gener-
ate the program dependency graph (PDG) and then isolate primary
modules from other non-primary modules. When generating the
graph, we assign weights 10, 10, 2, 1 to edges representing class
inheritance, package homogeny, method calls, and member field
references, respectively. The cut-off value for the merge_able
condition (Algorithm 1) is empirically set to 5, which works well
in practice (Section 3.2).

The second component – feature fingerprint and representation
(Section 2.2) – extracts the semantic features of 32, 011 APIs,
136 permissions, 122 intent types, 180 content provider features,
and 2 additional code loading features, which essentially condense
each app into a feature vector of length 32, 451. These feature
vectors are then organized into a Vantage Point Tree (VPT) that is
implemented in 2, 731 lines of C code. For search efficiency, we set
the number of partitions at each pivot node to 3. To strike a good
balance between accuracy and efficiency, we select Jaccard dis-
tance 0.15 for the similarity measurement of two primary modules.
We will detail how we choose this Jaccard distance in Section 3.3.

The third component – piggybacking identification and rider
analysis (Section 2.3) – is implemented in 611 lines of Python code.
Basically, it scans the list of candidate app pairs reported from
the second component, fetches the non-primary modules of related
apps, determines the piggybacked apps, and exposes the rider
code. In our implementation, we re-target the second component to
organize the rider code with one exception: no author information
is needed to constrain the nearest neighbor search.

To evaluate the scalability and efficacy of our system, we use it
to detect piggybacked apps in a dataset with 84, 767 apps collected
from seven different app marketplaces. In the following, we first
present our evaluation setup and then assess the accuracy of our
module decoupling technique. After that, we determine the Jac-
card distance for similarity measurement and report the detection
results, including the analysis of uncovered rider code. Finally, we
report the performance overhead.

3.1 Evaluation Setup
In Table 1, we summarize the collected apps in our dataset.

Basically, our crawler takes a snapshot of the available apps from

Table 1: The dataset for PiggyApp evaluation (†: the number

in parenthesis shows the percentage of apps that are also hosted

in the official Android Market.)

Marketplace Total Number of Apps

slideme (US1) 3108 (29.8%†)

freewarelovers (US2) 3188 (13.2%†)

eoemarket (CN1) 8261 (30%†)

goapk (CN2) 4334 (13.5%†)

softportal (EE1) 2305 (19.6%†)

proandroid (EE2) 1710 (20.2%†)

Official Android Market 68187

seven different Android marketplaces in the first week of March,
2011. In total, the dataset contains 84, 767 distinct apps: 68, 187
of them appear in the official Android Market [25] and the rest
come from other six popular third-party marketplaces: two in the
US, two in China, and two in Eastern Europe. We highlight that
we analyzed all these 84, 767 apps in this data set, which is made
possible by our scalable analysis framework. Earlier systems such
as DroidMOSS [44] employ pairwise comparison, which is not
scalable and can only work on limited samples (e.g., 200 in [44]).

For each app in our dataset, our system extracts 32, 451 semantic
features and presents them in a vector. In total, our system produces
84,767 feature vectors. To understand the distribution of each app
pair distance, we randomly select 2, 000 and 4, 000 samples and
measure their distances with all other apps in the dataset. The
results are shown in Figure 4 (with the y-axis in the log-scale).
As expected, most apps are not similar to each other, which is
reflected by the fact that a majority of distances (around 99.4%)
are larger than 0.8 (the largest possible distance is 1). Also, there
are a small fraction (0.06%) of apps whose distances fall below
distance 0.2, suggesting most piggybacked apps are located in this
range (Section 3.4). This distribution is helpful to create a balanced
VPT tree and leads to efficient nearest neighbor search.

3.2 Module Decoupling Accuracy
Module decoupling is an essential component, which affects

both the accuracy and efficiency of our system. To concretely
evaluate its effectiveness, we randomly choose 200 samples from
our dataset, apply the module decoupling algorithm (Algorithm 1),
and then manually verify the decoupling results. As with the
module decoupling process, verification involves two main aspects.
The first one is to determine whether these apps are decoupled into
the correct modules. Our results show that 193 apps (96.5%) are
correctly decoupled. The second aspect is to determine whether
primary modules are correctly labeled. For the correctly decoupled
193 apps, our system identifies 178 primary modules (92.2%). We
further examine the 15 mis-labeled apps and find that most cases,
especially game- and social network-related apps, use feature-rich
engines or libraries (e.g., Scoreloop [30] and Openfeint [38]) for
GUI rendering, user interaction, and virtual currency support. They
are generally considered as the main functionality of an app, but are
implemented as supporting frameworks and shared among related
apps. As these mis-labeled cases are rare and usually come from
a limited number of special-purpose SDKs, we choose to apply a
quick patch to our prototype by using a short white-list.

3.3 Jaccard Distance Trade-Off
Next we present our experiments to determine the proper Jaccard

distance in our study. As it measures the overlapped semantic

Figure 4: The cumulative distribution of pair-wise Jaccard distances

Table 2: Determining the right Jaccard distance

Jaccard Distance 0.05 0.1 0.15 0.2 0.25 0.3

True Positives 28 38 39 39 39 39
False Positives 0 0 2 2 4 4

features, our feature fingerprint is by design robust to existing
code obfuscation techniques [2]. Moreover, it provides a “tuning
knob” to adjust the trade-off between accuracy and efficiency.
Specifically, a larger distance will likely tolerate more disjoint
features between two apps, which has the benefit of reducing false
negatives but at the cost of increasing false positives. A smaller
distance leads to more false positives but less false negatives. As a
general rule of thumb, if two apps have a Jaccard distance greater
than 0.3, we consider the possibility of having a piggybacking
relationship to be very low.

In our study, we aim to achieve a lower threshold to improve the
search efficiency while still obtaining sufficient accuracy. To this
end, we choose 4, 000 random samples and use a series of Jaccard
distances to measure their accuracy. Specifically, for each distance,
we calculate the true positives and false positives by examining
each reported pair (as candidate piggybacked apps). The results
are shown in Table 2. The experiments clearly indicate the Jaccard
distance 0.15 as the threshold. In particular, the larger distances
(> 0.15) detect two more pairs, but they are false positives. We
also do not want to choose smaller distances because we still detect
more true positives as we move closer to 0.15 threshold. This result
is consistent with an earlier measurement reported in Figure 4.

We want to emphasize that the Jaccard distance threshold pro-
vides a desirable way to balance between efficiency and accuracy.
Based on the resources available to scrutinize candidate piggy-
backed apps, we can adjust the distance accordingly. For a smaller
dataset with less than 10,000 apps, we might choose to use a larger
distance so as to catch as many piggybacked apps as possible. For
a larger dataset with hundreds of thousands of apps, we might want
to use a smaller distance to accurately return a high-density set that
contains true piggybacked apps. In our above series of experiments,
when we use the distance 0.15, our system reports 41 candidate
pairs within 630 seconds and the distance of 0.05 returns 28 within
227 seconds.

3.4 Piggybacking Detection
From the previous section, we have empirically chosen 0.15 as

the optimal Jaccard distance threshold. In this section, we apply
it to our dataset and present our detection results. Overall, our
system detects 1, 094 (1.3%) piggybacked apps in our dataset. For
these repackaged apps, we further obtain the corresponding carrier
apps and then classify them based on their sources. The results are
shown in Table 3.

In the table, the second column shows the number of piggy-
backed apps in each market and the third column contains the
ratio of piggybacked apps to the number of apps we collected from

Table 3: Piggybacking detection results

App # Piggybacked Piggyback # Carrier
Marketplace Apps Rate Apps

Slideme (US1) 49 1.6% 32
Freewarelovers (US2) 31 0.97% 52
Eoemarket (CN1) 224 2.7% 98
Goapk (CN2) 83 1.9% 108
Softportal (EE2) 39 1.7% 26
Proandroid (EE1) 32 1.9% 15
Official Android Market 683 1.0% 298

each market. Due to the large number of apps it hosts, the official
Android Market contains the largest number of piggybacked apps,
but its piggyback rate is one of the lowest. The fourth column
reports the number of carrier apps that have been chosen for pig-
gybacking, which in general reflects which market is of interest to
piggybacking authors in order to find popular apps to piggyback
on. Our results show that game, wallpaper, and electronic book
apps are among the most popular targets. Notice that the numbers
in the carrier apps column are smaller than those in the piggybacked
apps column. The reason is that the same carrier apps may be
piggybacked multiple times to include different rider code (one
concrete example is shown in the next section).

Interestingly, when examining these piggybacked apps inside the
official Android Market, we find that 513 out of 683 (75%) are
actually based on carrier apps also located in the official market.
This clearly indicates the need for the official Android Market to
adopt a rigorous policing to detect and potentially remove them.
Also, notice that the remaining 170 piggyback on apps from third-
party markets. This may sound counter-intuitive at first glance, but
it is actually reasonable for two reasons: first, the official Android
Market may not always be accessible or convenient to users out-
side the US, which partially explains the popularity of third-party
markets in China; second, by choosing popular apps in third-party
markets and uploading piggybacked apps into the official one, the
app repackagers could reach more users for download and thus
potentially maximize their impact.

To further measure the false negative rate, we study a list of 77
apps that were known to be piggybacked in our dataset (before
our system was designed). PiggyApp correctly identifies 73 of
them and misses four, indicating a false negative rate of 5.2%.
Our manual analysis shows that these four failing cases are due to
our module decoupling implementation, which incorrectly labels
certain non-primary modules as primary and thus results in unnec-
essarily large Jaccard distances of related pairs.

3.5 Rider Analysis
After detecting these piggybacked apps, it is also interesting to

find out answers to the following questions: what are the purposes
behind these piggybacked apps? What rider code is injected into
carrier apps? Are there (additional) permissions the rider code asks
for? If there are, what are they? To answer these questions, we

Table 4: The statistics of piggybacked ad libraries

Ad Library Module Name # Piggybacked
Appsadmob
om.admob.android.ads 724wooboo
om.wooboo.adlib_android 321youmi net.youmi.android 197adwhirl
om.adwhirl 173google/ads
om.google.ads 170zestadz
om.zestadz.android 101millennialmedia
om.millennialmedia.android 97urbanairship
om.urbanairship.push 85mob
lix
om.mob
lix.android.sdk 45wiyun
om.wiyun.ad 36mob
li
k
om.mob
li
k.android 26greystripe
om.greystripe.android.sdk 26madhouse
om.madhouse.android.ads 5

perform a further analysis on these piggybacked apps. As it is not
feasible to examine every single piggybacked app, we choose to
use cluster analysis to group and correlate the rider code.

The clustering analysis is motivated from our detailed investi-
gation of these piggybacked apps. Specifically, when analyzing
specific samples, we observe two common characteristics: first,
many piggybacked apps share similar or even the same rider code;
second, the same carrier apps are found piggybacked with different
rider code. Our clustering analysis helps identify both of them.

In particular, to identify these common carrier apps, we sim-
ply count the number of each carrier app that occurs in the set
of identified app pairs. One such example is a popular game
app named
om.appspot.swiss
odemonkey.steam, which has been
piggybacked on at least six times: four of them are variants of
the Pjapps malicious payload [31], one is the ADRD malicious
payload [4], and the other is an ad library named wooboo [33].

To locate the related rider code, we again apply our feature
fingerprint technique to fetch the feature vectors of the rider code
(there are 2067 of them present in 1094 different piggybacked
apps) and apply the same nearest neighbor search algorithm (Al-
gorithm 2). In this case, instead of choosing the previous threshold
0.15, we select 0.2 to loosely group rider code. As a result, we
identify 16 clusters (ranging in size from 5 to 724). For each cluster,
we randomly choose some samples for manual investigation. By
doing so, we significantly reduce the time and effort needed to
analyze them. From the analysis, it becomes evident the inclusion
of rider code mainly serves two purposes. The first one is to
inject various ad libraries with the intention to collect ad revenue or
steal it from the original developers. The second one is to enclose
malicious payloads to directly control compromised phones or steal
personal information on the phones. In the next two sections, we
examine these two purposes in more detail.

3.5.1 Collecting Ad Revenue

In the first purpose, the piggybacked apps are used to insert
additional ad libraries, which help the repackagers, instead of the
original developers, to collect ad revenues (generated from users’
views or clicks). As most of existing apps are free, developers
want to monetize by including ad libraries and there are a variety
of them [24, 29, 33], which are provided as standalone packages
for simple reuse. Many of them require little or no change on
the original code. Examples include admob [24] and mob
lix [29].
Such convenience also makes it easy for repackagers to integrate
them into popular apps as their carriers. Among the detected 1,094
piggybacked apps, 1,068 (97.6%) fall in this category. In Table 4,
we show 13 top ad libraries in the rider code.

Table 5: The statistics of piggybacked malicious payloads

Malware Family Module Name # Piggybacked AppsGeinimi
om.geinimi 6ADRD
om.xxx.yyy 1Pjapps
om.android.main 8DDream
om.android.root 10BgServ
om.mms.bg 1

In the table, the first column shows the library name, the second
column contains its detailed module name, while the third column
counts the number of piggybacked apps that have it embedded.
Among these 13 ad libraries, admob tops the list by being present
in 724 carrier apps in our dataset. These ad libraries naturally
request their own permissions for the provided functionality, some
of which may not be requested by the carrier apps. It turns out
that all these ad libraries ask for the INTERNET permission, 9 of
them request the LOCATION permission, 5 need READ_PHONE_STATE,
1 demands CALL_PHONE, 1 uses ACCESS_WIFI_STATE, and 1 makes
use of ACCESS_NETWORK_STATE. On average, these modules ask for
2.3 permissions.

3.5.2 Injecting Malicious Payloads

In the second purpose, repackagers implant malicious payloads
into chosen carrier apps. In our dataset, we discover 5 different
malicious rider payloads embedded in 26 different carrier apps that
are present in various app markets. These malware are all listed in
the yearly report of Android malware [39]. In Table 5, we show
the list of detected malicious rider payloads. In the following, we
choose representative samples and present our analysis.Geinimi [27] is one of the earliest Android malware discovered
in the wild that piggybacks on legitimate apps to perform malicious
activities on the background. Our system identifies 6 piggybacked
apps that have similar Geinimi code embedded (two different vari-
ants with 96% of their code in common). Both variants add their
own activity, which once triggered invokes the embedded malicious
code, including the bootstrap of a new service. These variants also
add a new receiver to register for callbacks when certain events
such as SMS_RECEIVED and BOOT_COMPLETED happen. By doing so,
the malware can immediately run once the system boots or when a
short message is received. To accomplish all these tasks, Geinimi
needs 17 different permissions.

Compared to Geinimi, ADRD [4] is less complicated. Based on
our analysis, the rider code is composed of four new receivers,
which listen on the system boot completion event BOOT_COMPLETED,
phone state change PHONE_STATE, network connection state changeCONNECTIVITY_CHANGE and its own alarm timer
om.lz.myservi
estart. It also
defines a new service that will send device-specific information to a
remote server and receive instructions from it. In the piggybacked
app, the main entry point remains the same as in the carrier apps.
In our dataset, we only find one ADRD-piggybacked app with a new
module named
om.xxx.yyy. Overall, ADRD demands 7 different
permissions.Pjapps [31] is another malicious rider embedded in a number of
carrier apps. In our dataset, there are 8 of them. All the related
rider code share the same class package named
om.android.main.
In essence, it adds two new receivers and one more service. The
internal mechanism of these new components works similar to that
of ADRD. In total, Pjapps requests 9 permissions.DroidDream [28] was reported in the official Android Market
and our dataset contains 10 infected apps. Similarly, all of its
rider code share a common module named
om.android.root. As

with Geinimi, it adds its own activity and starts a new service
to set up an alarm timer, which in return triggers another service
to launch one root exploit to elevate its privilege. With the root
exploit, DroidDream requests fewer permissions, but can essentially
do whatever it wants on the compromised devices.

The last piece of malicious rider code is from the BgServ mal-
ware, which injects one module named
om.mms.bg into carrier
apps to transport device-specific information (via short messages)
to a remote party. One interesting thing about this payload is that it
leverages an open source project hosted at Google code projects [1].
For its wrongdoings, BgServ asks for 9 permissions.

Overall, these malicious payloads all request more permissions
than original carrier apps, which imply that the request for a bulk
of permissions may be an indicator for potentially suspicious apps.

3.6 Performance
In this section, we report the performance measurement of our

system. Our test runs on a Ubuntu Server 10.04 Linux machine
with an four-core Intel Xeon CPU (2.67HZ) and 8G memory.
Our current prototype runs on a single thread, which leaves room
for future improvement to take advantage of multiple threads for
speed-up.

In our test, we run the module decoupling and feature extraction
separately, which is easily parallelized. Each app, depending on
its complexity, takes from 0.167 to 5.492 seconds to process. On
average, it takes 0.952 seconds to process one app. Our module
decoupling task of all these 84, 767 apps takes 5 hours and 36
minutes in total. The construction of the VPT tree requires 126
seconds. Based on the VPT tree, given a single app, our algorithm
takes between 0.00001 seconds and 0.576 seconds to find its
nearest neighbor with 0.133 seconds on average. To iterate the
apps in our dataset to locate possible piggybacked apps, it takes 3
hours and 15 minutes in total. The memory footprint seems small
as only 127M main memory is used.

When streamlining the processing of these components, it takes
less than nine hours to analyze our dataset with 84, 767 apps from
seven different Android markets. As mentioned earlier, improve-
ments exist to better parallelize various components so that we can
further reduce the processing time.

4. DISCUSSION

Our prototype demonstrates promising results by allowing for
fast and scalable detection of piggybacked apps. In this section, we
examine possible limitations in the current prototype and discuss
future improvements.

First, to infer piggybacking relationship, we extract semantic
features based on primary modules of existing apps. These se-
mantic features are mainly based on the Android APIs, requested
permissions, and various intents, etc. Though these features satisfy
our current needs, they are still limited in a number of ways. To
improve the system, we could extend these semantic features to
include syntactic instruction sequences [44] or control-flow graphs.
The addition will be helpful to better characterize and identify a
particular app. Meanwhile, our core prototype remains intact as we
can easily expand feature vectors to accommodate them and reuse
the same VPT tree for construction and lookup.

Second, our current prototype largely depends on the existence
of authentic carrier apps in order to detect piggybacked apps. Un-
fortunately, due to the variety, scale, and dynamic nature of existing
app markets, it is not possible to build a centralized repository
having every app in existence; our current collection is far from
complete. For example, there are cases where we can infer a
potential piggybacking relationship but can not determine which

one is actually piggybacked (Section 2). Also, our collection is
comprised of only free apps and does not include paid apps, which
are sold for their features and will likely be attractive targets for
piggybacking. This also indicates the need to continuously expand
our current data set with more comprehensive samples.

Finally, our current prototype basically serializes the execution
of different components. As mentioned earlier, for improved per-
formance, there is a need to re-engineer our prototype for a parallel
version. Fortunately, the overall system design of PiggyApp is
parallelizable in nature and does not require complete revamp.

5. RELATED WORK

Software similarity measurement and searching The first cate-
gory of related work includes prior efforts in effectively measuring
software similarity and detecting plagiarized code [44, 12, 34, 23].
Among all these works, DroidMOSS [44] is a closely related one
to measure the similarity of mobile apps. PiggyApp differs from it
in three aspects: First, DroidMOSS detects repackaged apps while
PiggyApp focuses on piggybacked apps. As mentioned earlier,
piggybacked apps are a subset of repackaged ones but pose greater
security threats. Second, our system overcomes the scalability
limitation from the pair-wise comparison in DroidMOSS. Specif-
ically, by proposing a new distance metric design and the associ-
ated nearest neighbor search algorithm, our system achieves better
detection efficiency and scalability (with O(n log n) complexity,
instead of O(n2)), and enables a large scale evaluation instead of
sampling based study. Third, for app comparison, DroidMOSS
depends on syntactic instruction sequences of entire apps while
PiggyApp extracts semantic features only from their primary mod-
ules, which leads to better accuracy and efficiency. DNADroid [12]
uses program dependency graph (PDG) to characterize Android
app and compares PDGs between methods in app pair, showing
resistance to several evasion techniques. But it also applies pair-
wise comparison as DroidMOSS, therefore lacking the scalability
as presented in PiggyApp.

Smit [23] leverages a similar Vantage Point Tree but for large
scale malware indexing and queries. In particular, by focusing
on detecting malware variants, it does not have the need to fur-
ther decouple internal modules, which is essential for our system.
Similarly, BitShred [34] focuses on large-scale malware triage
analysis by using feature hashing techniques to dramatically reduce
the dimensions in the constructed malware feature space. After
reduction, pair-wise comparison is still necessary to infer similar
malware families. In comparison, PiggyApp focuses on a different
problem, i.e., piggybacking detection among existing mobile apps,
which necessitates module decoupling-like techniques to partition
apps into primary and non-primary modules. Also, our linearithmic
nearest neighbor search algorithm avoids the need of performing
pair-wise comparison.

Program comprehension As our system centers on module
decoupling to identify piggybacking relationships, we also consider
the second category of related work from existing program com-
prehension techniques. Specifically, module decoupling has been
an important tool to comprehend and manage large-scale legacy
software that may not be well understood or easily maintained.
To reduce a given large system into smaller and more manageable
units, different techniques have been proposed in two general sub-
categories. The first one concerns different clustering techniques,
which use a variety of software metrics to group smaller units of
code into larger modules [5,36]. Our module decoupling technique
is based on one such clustering method – agglomerative clustering.
In particular, our system initially considers Java class packages

as the smallest unit and then infers different kinds of program
dependencies as metrics to merge them. The second one is concept
analysis [35, 42], which in general uses functions as the smallest
unit and employs lattice theory to group functions that have some
specific common attributes. We consider function-level granularity
may not be appropriate for our purpose and thus have not explored
it further.

Mobile app security and analysis The third category covers
a variety of projects [15, 37, 16, 47, 19, 17, 11, 21, 46, 22, 45, 20]
that have been undertaken to analyze or improve mobile secu-
rity. Specifically, they can be loosely classified into two groups.
The first group of projects analyze a single app from various
perspectives to identify possible security and privacy problems.
For example, both TaintDroid [15] and PiOS [14] focus on the
privacy leak problem, and respectively use dynamic taint analy-
sis and static data flow analysis to infer potential privacy leaks.
DroidRanger [47] instead combines both static permission analysis
and dynamic footprint monitoring to detect malicious applications
in existing Android marketplaces. SCanDroid [19] examines an
app’s manifest file to automatically extract a data flow policy, and
then checks whether the data flows in the app are consistent with
the extracted specification. Stowaway [17] studies a set of 940 apps
and finds that about one-third are not following the principle of
least privilege. Enck et al. [16] crafted a byte code decompiler to
study 1, 100 popular Android apps for characterization. All these
tools use static analysis, or dynamic analysis, or both techniques
to infer some specific security or privacy properties for individual
mobile app. In contrast, PiggyApp uses feature vectors, rather
than more expensive and complicated static or dynamic analysis
techniques, to enable the rapid comparison of pairs of apps.

The second group is more closely related to PiggyApp, as it
involves the interactions between apps. For example, one line of
research [37, 11, 18, 21, 13, 10] studies the security risks causes by
inter-application interaction. Among them, both ComDroid [11]
and Saint [37] examine the interfaces third-party apps export in or-
der to uncover possible unintended consequences. Woodpecker [21]
focuses on a similar “capability leak” problem in Android firmware
apps preloaded on the device. Numerous solutions to this problem
have been proposed. For example, Saint [37] further extends the
Android framework to enforce a user-configurable inter-application
policy. Felt et al. [18] proposes a mechanism called IPC Inspection
that allows the framework to inspect the complete call chain that
leads to a request for a dangerous feature. QUIRE [13] addresses
the same permission delegation problem by proposing IPC call
chain tracking to identify the provenance of these IPC requests
and then enforce security checks. Bugiel et al. [10] use a run-
time monitor to regulate communications between apps, to protect
Android against confused deputy and colluding apps attacks. While
PiggyApp is concerned with the relationship between apps and the
interfaces they export, it differs substantially from these systems in
that it does not attempt to model the flow of information or control
through an app; PiggyApp is concerned with the similarity between
two apps, not what they do or whether they may be tricked into
doing something inappropriate.

Another line of research [7,8] focuses more broadly on entire app
markets. For example, Stratus [7] explores the security problem
of the whole app ecosystem composed of multiple markets, each
of which has its own security policy, and proposes a new app
installation method to retain the original single-market security se-
mantics (e.g., kill switches or developer name consistency). While
its focus is markedly different from ours, both directly concern the
issues that face app marketplaces today. Barrera et al. [8] uses
a self-organization map to analyze 1,100 popular Android apps

and identifies common usage patterns of permissions shared by
different apps. Our approach also employs clustering techniques
and extracts certain semantic features from the set of permissions
an app requests. However, Barrera et al. uses them to visualize the
relationships (in terms of requested permissions) among popular
apps. PiggyApp instead makes use of them to build a VPT tree for
efficient piggybacking detection.

6. CONCLUSION
In this paper, we present PiggyApp, a system for fast and scal-

able detection of piggybacked apps in existing Android markets.
Based on the observation that in a piggybacked app, the added rider
code is loosely coupled with the primary functionality (or module)
of the original app, we develop a module decoupling technique to
effectively locate the primary module for comparison. To avoid
pair-wise comparison, we further propose a scalable approach to
extract semantic features from the decoupled primary modules and
organize them in a metric space, which allows for fast and efficient
search (with O(n log n) complexity). We have implemented a
prototype and used it to detect piggybacked apps in a dataset
collected from seven different markets. Our results show that
0.97% to 2.7% of apps hosted in these markets, including the
official Android Market, are piggybacked. Based on these results,
we further analyze rider code and find that it mainly serves two
purposes: stealing ad revenue and implanting malicious payloads.
These results call for a rigorous vetting process for their detection.

Acknowledgements The authors would like to thank the anony-
mous reviewers for their insightful comments that helped improve
the presentation of this paper. We also want to thank Chiachih Wu,
Minh Q. Tran, Lei Wu and Kunal Patel for the helpful discussion.
This work was supported in part by the US National Science
Foundation (NSF) under Grants 0855297, 0855036, 0910767, and
0952640. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do
not necessarily reflect the views of the NSF.

7. REFERENCES
[1] MMSBG: An Open-Source Project. https://code.

google.com/p/mmsbg. Online; accessed at Dec 1, 2011.

[2] ProGuard | Android Developers. http://developer.
android.com/guide/developing/tools/

proguard.html. Online; accessed at Dec 1, 2011.

[3] Smali - An Assembler/Disassembler for Android’s dex
Format. http://code.google.com/p/smali/.
Online; accessed at Dec 1, 2011.

[4] AndroidCommunity. [ALERT] New Trojan Called Hong Tou
Tou Lurking. http://androidcommunity.com/
android-trojan-alert-hong-tou-tou-

20110216/. Online; accessed at Dec 1, 2011.

[5] Nicolas Anquetil, Cédric Fourrier, and Timothy C.
Lethbridge. Experiments with Clustering as a Software
Remodularization Method. In Proceedings of the Sixth

Working Conference on Reverse Engineering, WCRE ’99,
pages 235–, Washington, DC, USA, 1999. IEEE Computer
Society.

[6] AppBrain. Number of Available Android Applications.
http://www.appbrain.com/stats/number-of-

android-apps. Online; accessed at Dec 1, 2011.

[7] David Barrera, William Enck, and Paul Oorschot. Seeding a
Security-Enhancing Infrastructure for Multi-market
Application Ecosystems. Technical report, School of

https://code.google.com/p/mmsbg
https://code.google.com/p/mmsbg
http://developer.android.com/guide/developing/tools/proguard.html
http://developer.android.com/guide/developing/tools/proguard.html
http://developer.android.com/guide/developing/tools/proguard.html
http://code.google.com/p/smali/
http://androidcommunity.com/android-trojan-alert-hong-tou-tou-20110216/
http://androidcommunity.com/android-trojan-alert-hong-tou-tou-20110216/
http://androidcommunity.com/android-trojan-alert-hong-tou-tou-20110216/
http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps

Computer Science, Carleton University, http://www.
scs.carleton.ca/shared/research/tech_

reports/2010/TR-11-06%20Barrera.pdf.
Online; accessed at Dec 1, 2011.

[8] David Barrera, H. Güneş Kayacik, Paul C. van Oorschot, and
Anil Somayaji. A Methodology for Empirical Analysis of
Permission-Based Security Models and Its Application to
Android. In Proceedings of the 17th ACM Conference on

Computer and Communications Security, CCS ’10, 2010.

[9] Joany Boutet. Malicious Android Applications: Risks and
Exploitation - A Spyware Story about Android Application
and Reverse Engineering. http://www.sans.org/
reading_room/whitepapers/malicious/

malicious-android-applications_risks-

exploitation_33578. Online; accessed at Dec 1, 2011.

[10] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas
Fischer, Ahmad-Reza Sadeghi, and Bhargava Shastry.
Towards Taming Privilege-Escalation Attacks on Android. In
19th Annual Network & Distributed System Security

Symposium (NDSS), Feb 2012.

[11] Erika Chin, Adrienne Felt, Kate Greenwood, and David
Wagner. Analyzing Inter-Application Communication in
Android. In Proceedings of the 9th Annual International

Conference on Mobile Systems, Applications, and Services,
MobiSys 2011, 2011.

[12] Jonathan Crussell, Clint Gibler, and Hao Chen. Attack of the
Clones: Detecting Cloned Applications on Android Markets.
In Sara Foresti, Moti Yung, and Fabio Martinelli, editors,
Computer Security âĂŞ ESORICS 2012, volume 7459 of
Lecture Notes in Computer Science, pages 37–54. Springer
Berlin Heidelberg, 2012.

[13] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu,
and Dan Wallach. QUIRE: Lightweight Provenance for
Smart Phone Operating Systems. In Proceedings of the 20th

USENIX Security Symposium, USENIX Security ’11, San
Francisco, CA, 2011.

[14] Manuel Egele, Christopher Kruegel, Engin Kirda, and
Giovanni Vigna. PiOS: Detecting Privacy Leaks in iOS
Applications. In Proceedings of the 18th Annual Network

and Distributed System Security Symposium, NDSS ’11,
February 2011.

[15] William Enck, Peter Gilbert, Byung-gon Chun, Landon Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol Sheth.
TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones. In
Proceedings of the 9th USENIX Symposium on Operating

Systems Design and Implementation, USENIX OSDI ’11,
2011.

[16] William Enck, Damien Octeau, Patrick McDaniel, and
Swarat Chaudhuri. A Study of Android Application Security.
In Proceedings of the 20th USENIX Security Symposium,
USENIX Security ’11, San Francisco, CA, 2011.

[17] Adrienne Felt, Erika Chin, Steve Hanna, Dawn Song, and
David Wagner. Android Permissions Demystified. In
Proceedings of the 18th ACM Conference on Computer and

Communications Security, CCS’ 11, 2011.

[18] Adrienne Felt, Helen Wang, Alexander Moschhuk, Steve
Hanna, and Erika Chin. Permission Re-Delegation: Attacks
and Defense. In Proceedings of the 20th USENIX Security

Symposium, USENIX Security ’11, San Francisco, CA,
2011.

[19] Adam Fuchs, Avik Chaudhuri, and Jeffrey Foster.

SCanDroid: Automated Security Certification of Android
Applications. http://www.cs.umd.edu/~avik/
projects/scandroidascaa/paper.pdf. Online;
accessed at Dec 1, 2011.

[20] Michael Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza
Sadeghi. Unsafe Exposure Analysis of Mobile In-App
Advertisements. In Proceedings of the 5th ACM Conference

on Security and Privacy in Wireless and Mobile Networks,
2012.

[21] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang.
Systematic Detection of Capability Leaks in Stock Android
Smartphones. In Proceedings of the 19th Annual Network

and Distributed System Security Symposium, NDSS ’12,
February 2012.

[22] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and
Xuxian Jiang. RiskRanker: Scalable and Accurate Zero-day
Android Malware Detection. In 10th International

Conference on Mobile Systems, Applications and Services,
June 2012.

[23] Xin Hu, Tzi-cker Chiueh, and Kang G. Shin. Large-Scale
Malware Indexing using Function-Call Graphs. In
Proceedings of the 16th ACM conference on Computer and

communications security, CCS ’09, pages 611–620, New
York, NY, USA, 2009. ACM.

[24] Google Inc. Admob for Android Developers. http://
developer.admob.com/wiki/Android.

[25] Google Inc. Android Market. https://market.
android.com/. Online; accessed at Dec 1, 2011.

[26] Lookout Inc. App Genome Report: February 2011.
https://www.mylookout.com/appgenome/.
Online; accessed at Dec 1, 2011.

[27] Lookout Inc. Security Alert: Geinimi, Sophisticated New
Android Trojan Found in Wild. http://blog.
mylookout.com/2010/12/geinimi_trojan/.
Online; accessed at Dec 1, 2011.

[28] Lookout Inc. Update: Security Alert: DroidDream Malware
Found in Official Android Market. http://blog.
mylookout.com/2011/03/security-alert-

malware-found-in_official-android-

market-droiddream/. Online; accessed at Dec 1, 2011.

[29] MobClix Inc. Mobclix SDK Integration Guide. http://
support.mobclix.com/attachments/token/

lvbgrqsfpjgvgxb/?name=Detailed_Start_

Guide_for_Android.pdf. Online; accessed at Dec 1,
2011.

[30] Scoreloop Inc. Scoreloop : Cross Platform Mobile Gaming
SDK for Virtual Currency, Social Games and Distribution.
http://www.scoreloop.com/developers/.

[31] Symantec Inc. Android Threats Getting Steamy. http://
www.symantec.com/connect/blogs/android-

threats-getting-steamy. Online; accessed at Dec 1,
2011.

[32] Symantec Inc. Android.Basebridge: Technical Details.
http://www.symantec.com/security_

response/writeup.jsp?docid=2011-060915-

4938-99&tabid=2. Online; accessed at Dec 1, 2011.

[33] Wooboo Inc. How to Add Wooboo Advertisement SDK into
Android. http://admin.wooboo.com.cn:9001/
cbFiles/down/1272545843644.swf.

[34] Jiyong Jang, David Brumley, and Shobha Venkataraman.
BitShred: Feature Hashing Malware for Scalable Triage and
Semantic Analysis. In Proceedings of the 18th ACM

http://www.scs.carleton.ca/shared/research/tech_reports/2010/TR-11-06%20Barrera.pdf
http://www.scs.carleton.ca/shared/research/tech_reports/2010/TR-11-06%20Barrera.pdf
http://www.scs.carleton.ca/shared/research/tech_reports/2010/TR-11-06%20Barrera.pdf
http://www.sans.org/reading_room/whitepapers/malicious/malicious-android-applications_risks-exploitation_33578
http://www.sans.org/reading_room/whitepapers/malicious/malicious-android-applications_risks-exploitation_33578
http://www.sans.org/reading_room/whitepapers/malicious/malicious-android-applications_risks-exploitation_33578
http://www.sans.org/reading_room/whitepapers/malicious/malicious-android-applications_risks-exploitation_33578
http://www.cs.umd.edu/~avik/projects/scandroidascaa/paper.pdf
http://www.cs.umd.edu/~avik/projects/scandroidascaa/paper.pdf
http://developer.admob.com/wiki/Android
http://developer.admob.com/wiki/Android
https://market.android.com/
https://market.android.com/
https://www.mylookout.com/appgenome/
http://blog.mylookout.com/2010/12/geinimi_trojan/
http://blog.mylookout.com/2010/12/geinimi_trojan/
http://blog.mylookout.com/2011/03/security-alert-malware-found-in_official-android-market-droiddream/
http://blog.mylookout.com/2011/03/security-alert-malware-found-in_official-android-market-droiddream/
http://blog.mylookout.com/2011/03/security-alert-malware-found-in_official-android-market-droiddream/
http://blog.mylookout.com/2011/03/security-alert-malware-found-in_official-android-market-droiddream/
http://support.mobclix.com/attachments/token/lvbgrqsfpjgvgxb/?name=Detailed_Start_Guide_for_Android.pdf
http://support.mobclix.com/attachments/token/lvbgrqsfpjgvgxb/?name=Detailed_Start_Guide_for_Android.pdf
http://support.mobclix.com/attachments/token/lvbgrqsfpjgvgxb/?name=Detailed_Start_Guide_for_Android.pdf
http://support.mobclix.com/attachments/token/lvbgrqsfpjgvgxb/?name=Detailed_Start_Guide_for_Android.pdf
http://www.scoreloop.com/developers/
http://www.symantec.com/connect/blogs/android-threats-getting-steamy
http://www.symantec.com/connect/blogs/android-threats-getting-steamy
http://www.symantec.com/connect/blogs/android-threats-getting-steamy
http://www.symantec.com/security_response/writeup.jsp?docid=2011-060915-4938-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-060915-4938-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-060915-4938-99&tabid=2
http://admin.wooboo.com.cn:9001/cbFiles/down/1272545843644.swf
http://admin.wooboo.com.cn:9001/cbFiles/down/1272545843644.swf

conference on Computer and communications security, CCS
’11, pages 309–320, New York, NY, USA, 2011. ACM.

[35] Christian Lindig and Gregor Snelting. Assessing Modular
Structure of Legacy Code based on Mathematical Concept
Analysis. In Proceedings of the 19th international

conference on Software engineering, ICSE ’97, pages
349–359, New York, NY, USA, 1997. ACM.

[36] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R.
Gansner. Using Automatic Clustering to Produce High-Level
System Organizations of Source Code. In Proceedings of the

6th International Workshop on Program Comprehension,
IWPC ’98, pages 45–, Washington, DC, USA, 1998. IEEE
Computer Society.

[37] Machigar Ongtang, Stephen McLaughlin, William Enck, and
Patrick McDaniel. Semantically Rich Application-Centric
Security in Android. In Proceedings of the 2009 Annual

Computer Security Applications Conference, ACSAC ’09,
2009.

[38] OpenFeint. OpenFeint Developers - Mobile Open Source
Social SDK & Tools for iOS & Android. http://
openfeint.com/developers. Online; accessed at Dec
1, 2011.

[39] Paolo Passeri. One Year of Android Malware (Full List)).
http://paulsparrows.wordpress.com/2011/

08/11/one-year-of-android-malware-full-

list/. Online; accessed at Dec 1, 2011.

[40] Google Code Project. Android-apktool - Tool for
Reengineering Android apk Files. http://code.
google.com/p/android-apktool/. Online;
accessed at Dec 1, 2011.

[41] Helmuth Spaeth. Cluster Analysis Algorithms for Data
Reduction and Classification of Objects. J. Wiley and Sons,
1980.

[42] Paolo Tonella. Concept Analysis for Module Restructuring.
IEEE Trans. Softw. Eng., 27:351–363, April 2001.

[43] Peter N. Yianilos. Data Structures and Algorithms for
Nearest Neighbor Search in General Metric Spaces. In
Proceedings of the fourth annual ACM-SIAM Symposium on

Discrete algorithms, SODA ’93, pages 311–321,
Philadelphia, PA, USA, 1993. Society for Industrial and
Applied Mathematics.

[44] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning.
DroidMOSS: Detecting Repackaged Smartphone
Applications in Third-Party Android Marketplaces. In
Proceedings of the 2nd ACM Conference on Data and

Application Security and Privacy, CODASPY ’12, February
2012.

[45] Yajin Zhou and Xuxian Jiang. Dissecting Android Malware:
Characterization and Evolution. In Proceedings of the 33rd

IEEE Symposium on Security and Privacy, 2012.

[46] Yajin Zhou and Xuxian Jiang. Detecting Passive Content
Leaks and Pollution in Android Applications. In Proceedings

of the 20th Annual Symposium on Network and Distributed

System Security, 2013.

[47] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey,
You, Get off of My Market: Detecting Malicious Apps in
Official and Alternative Android Markets. In Proceedings of

the 19th Annual Network and Distributed System Security

Symposium, NDSS ’12, February 2012.

http://openfeint.com/developers
http://openfeint.com/developers
http://paulsparrows.wordpress.com/2011/08/11/one-year-of-android-malware-full-list/
http://paulsparrows.wordpress.com/2011/08/11/one-year-of-android-malware-full-list/
http://paulsparrows.wordpress.com/2011/08/11/one-year-of-android-malware-full-list/
http://code.google.com/p/android-apktool/
http://code.google.com/p/android-apktool/

	Introduction
	Design
	Module Decoupling
	Feature Fingerprint and Representation
	Piggybacking Identification and Rider Analysis

	Prototyping and Evaluation
	Evaluation Setup
	Module Decoupling Accuracy
	Jaccard Distance Trade-Off
	Piggybacking Detection
	Rider Analysis
	Collecting Ad Revenue
	Injecting Malicious Payloads

	Performance

	Discussion
	Related Work
	Conclusion
	References

