
Demystifying Diehard Android Apps
Hao Zhou

The Hong Kong Polytechnic
University

Hong Kong, China
cshaoz@comp.polyu.edu.hk

Haoyu Wang
Beijing University of Posts and

Telecommunications
Beijing, China

haoyuwang@bupt.edu.cn

Yajin Zhou
Zhejiang University
Hangzhou, China

yajin_zhou@zju.edu.cn

Xiapu Luo∗
The Hong Kong Polytechnic

University
Hong Kong, China

csxluo@comp.polyu.edu.hk

Yutian Tang
ShanghaiTech University

Shanghai, China
csytang@ieee.org

Lei Xue
The Hong Kong Polytechnic

University
Hong Kong, China

cslxue@comp.polyu.edu.hk

Ting Wang
Pennsylvania State University

Pennsylvania, USA
inbox.ting@gmail.com

ABSTRACT
Smartphone vendors are using multiple methods to kill processes
of Android apps to reduce the battery consumption. This motivates
developers to find ways to extend the liveness time of their apps,
hence the name diehard apps in this paper. Although there are blogs
and articles illustrating methods to achieve this purpose, there is
no systematic research about them. What’s more important, little
is known about the prevalence of diehard apps in the wild.

In this paper, we take a first step to systematically investigate
diehard apps by answering the following research questions. First,
why and how can they circumvent the resource-saving mechanisms
of Android? Second, how prevalent are they in the wild? In particu-
lar, we conduct a semi-automated analysis to illustrate insights why
existing methods to kill app processes could be evaded, and then
systematically present 12 diehard methods. After that, we develop
a system named DiehardDetector to detect diehard apps in a large
scale. The experimental result of applying DiehardDetector to more
than 80k Android apps downloaded from Google Play showed that
around 21% of apps adopt various diehard methods. Moreover, our
system can achieve high precision and recall.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation.

∗The corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416637

ACM Reference Format:
Hao Zhou, Haoyu Wang, Yajin Zhou, Xiapu Luo, Yutian Tang, Lei Xue,
and Ting Wang. 2020. Demystifying Diehard Android Apps. In 35th
IEEE/ACM International Conference on Automated Software Engineering (ASE
’20), September 21–25, 2020, Virtual Event, Australia. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3324884.3416637

1 INTRODUCTION
Battery life is one of major concerns of users. A recent survey
showed that “41% of US smartphone users say a longer battery life
is the design feature they want most.” [9] Accordingly, smartphone
vendors deploy resource-saving mechanisms to optimize the battery
usage to kill background app processes [3].

However, from another perspective, app developers intend to
increase the active time (liveness) of their apps. By doing so, they
can maintain an inactive experience with users, such as provid-
ing timely services (e.g., sending notifications), making profit (e.g.,
pushing advertisements), etc. Indeed, recent years have witnessed
many apps (diehard apps) employ various approaches to bypass
resource-saving mechanisms. These approaches, which can prolong
diehard apps’ lifetime, are called diehard methods.

The diehard methods can be roughly divided into 2 categories
according to their purposes: (1) keeping apps alive; (2) waking
up apps. Shao et al. [26] manually studied 23 diehard apps and
found a few diehard methods, most of which aim at waking up
apps. However, the community still lacks a deep understanding of
diehard methods and diehard apps.
Our work In this paper, we take a first step to systematically in-
vestigate diehard apps by answering 3 research questions: (1) Why
could existing methods to kill app processes be circumvented? (2)
How do direhard apps keep themselves alive or be waken up? (3)
Do diehard behaviors widely exist in apps in the wild? Answers to
these questions can facilitate the development of effective resource-
saving mechanisms to benefit users (with a battery-efficient system)
and keep the app ecosystem healthy by discovering diehard apps.

https://doi.org/10.1145/3324884.3416637
https://doi.org/10.1145/3324884.3416637

ASE ’20, September 21–25, 2020, Virtual Event, Australia Hao Zhou, Haoyu Wang, Yajin Zhou, Xiapu Luo, Yutian Tang, Lei Xue, and Ting Wang

To this end, we first perform a systematic study on existing
methods to kill app processes and analyze why these methods could
be evaded (in §3). It is not easy to locate these methods and figure
out corresponding evasion approaches because Android system
has more than 10 millions lines of code and it is still evolving, let
alone the lack of detailed documentation for those methods. We
solve this challenge by taking a semi-automated approach that uses
static code analysis to extract mostly relevant source code and then
manually inspect it to understand the internal mechanisms.

Second, leveraging the observations obtained in the previous
step, we systematically propose 12 diehard methods. Among them,
7 methods can keep the app alive (in §4), and 6 of them have not
been reported before. The remaining 5 approaches can wake up
diehard apps (in §5), and 1 of them is not mentioned in the pre-
vious work [26]. To evaluate the effectiveness of these methods,
we develop 2 diehard apps (a normal app and an instant app). The
extensive experiments on popular Android versions, ranging from
Android 5.1 to Android 10.0, show that all of our methods can
prolong apps’ liveness time.

Third, to detect diehard apps in the wild, we develop DiehardDe-
tector, a new detection tool based on the 12 diehard methods. We
carefully design DiehardDetector to make it achieve low false posi-
tive and false negative rates and be able to inspect a large number
of Android apps. The evaluation results of DiehardDetector show
that it is accurate (i.e., the precision and the recall of the results
on detecting diehard apps are 100% and 94.70%, respectively) and
efficient (i.e., 45 seconds for analyzing an app on average).

Fourth, we apply DiehardDetector to analyze more than 80k
apps for identifying diehard behaviors. The experimental results
show that around 21% of the apps from Google Play have diehard
behaviors. Moreover, 2 proposed diehard methods have not been
found in the apps under investigation. It suggests that we find 2
previously unknown methods to extend the liveness time of apps.

To engage the community, we release DiehardDetector and the
apps involved in the evaluation at https://github.com/moonZHH/
DiehardDetector.

In summary, this paper makes the following main contributions:

• To our best knowledge, we perform the first systematic investi-
gation on diehard apps. In particular, we are the first to reveal
why the resource-saving mechanisms can be circumvented and
propose 12 diehard methods to keep apps alive and wake up apps.

• We develop DiehardDetector, a new tool that can identify diehard
behaviors in Android apps accurately and efficiently.

• We conduct extensive experiments to evaluate DiehardDetector
and examine the prevalence of diehard methods used by apps.
The experimental results on over 80k apps from Google Play
show that DiehardDetector can accurately identify the diehard
behaviors of apps in a scalable manner. Moreover, around 21% of
apps published in Google Play have diehard behaviors.

2 BACKGROUND
Android apps can be roughly classified into 2 categories: (1) system
apps, which are usually pre-installed by smartphone vendors. Since
such apps are protected by Android system from being killed, they
rarely use diehard methods. (2) normal apps and instant apps, which
are created by developers and downloaded by the smartphone users.

M1: ActivityManagerShellCommand.onCommand(*)
M2: ActivityManagerShellCommand.runKillAll()
M3: ActivityManagerService.killAllBackgroundProcesses() {
C1: if (/*check permission KILL_BACKGROUND_PROCESS*/) { ... }
 /* if permission has been granted, continues execution */
C2: if (app.setAdj >= CACHED_APP_MIN_ADJ) {
 /* if the priority of the app process satisfies the condition, kill the process */
 } ... }
M4: ActivityManagerService.removeProcessLocked(*)
M5: ProcessRecord.kill()

Execution Path

Figure 1: Finding the process-killing method, KAP.

Such apps may adopt diehard methods to prolong the liveness time
for many purposes (e.g., pushing advertisements to make profits).

An app may have multiple processes. By default, an app’s com-
ponents (i.e., activities, services, broadcast receivers, and content
providers) are running in the app’s main process. However, each
component can specify its process property in the manifest file to
make it run in a separate process other than the main process. If all
of an app’s running processes are killed, the app is stopped.

Android framework provides 2 data structures, ProcessRecord
and TaskRecord, to manage app processes. We leverage them to
find out the methods for killing the app process or stopping the
app. Note that the methods for stopping the app are special cases
of methods for killing the app process because they are designed to
kill all running processes associated with an app.
ProcessRecord: It is used to characterize each running app process
by ActivityManagerService (AMS), one of the core services of
Android system. Specifically, the curAdj (or setAdj) field and the
curSchedGroup (or setSchedGroup) field of a ProcessRecord ob-
ject hold an app process’s priority values. There are several ways to
notify AMS to create a ProcessRecord for an app, e.g., launching
its activity, starting its service, sending a broadcast that can be
responded by its receiver, accessing its content provider, etc.
TaskRecord: It is used to characterize an activity Task [11], which
is a collection of activities that the user interacts with when per-
forming a certain job. Meanwhile, in normal cases, a TaskRecord
object of a recently accessed app corresponds to an item in the
Recent-Task list [8]. Accordingly, a TaskRecord object links an
activity task of a recently accessed app with a Recent-Task item.

3 METHODS FOR KILLING APP PROCESSES
To find the methods for killing app processes, we conduct a semi-
automated investigation on the framework and the system appli-
cations (e.g., low memory killer, a.k.a LMK) of Android 9.0 in §3.1.
We learn from this investigation that the priority of an app process
affects whether it will be killed or not, and describe how Android
system determines an app process’s priority in §3.2. In §3.3, we
disclose the internals of these process-killing methods, and point
out the insights why they can be evaded, which are then exploited
to design diehard methods (in §4 and §5).

3.1 Finding Process-killing Methods
Diehard apps employ diehard methods to prevent their processes
from being killed. Thus we look for all process-killing methods
to understand why they could be circumvented. There are 2 basic
approaches to terminate an app process: (1) invoking the kill API
defined in the ProcessRecord class, because Android framework
uses ProcessRecord to represent a running app process; (2) using
the kill function exported by libc.so, because native applications

https://github.com/moonZHH/DiehardDetector
https://github.com/moonZHH/DiehardDetector

Demystifying Diehard Android Apps ASE ’20, September 21–25, 2020, Virtual Event, Australia

or libraries can invoke this function that calls syscall __NR_kill.
We adopt a semi-automated way to find other process-killing meth-
ods that will eventually call either of the above basic approaches.
Starting with the basic approaches, we use static analysis to ex-
tract most relevant source code and then manually inspect them,
as detailed in the following paragraphs. It is worth noting that this
semi-automated way allows us to inspect the whole Android system
and can be used to find new or changed process-killing methods in
the future versions of Android.
Procedure: To find the process-killing methods in Android frame-
work, we first construct the call graph of the framework by using
PScout [13]. Then, we locate the ProcessRecord.kill API in the
call graph and perform backward reachability analysis to get the
execution paths that reach this API. Each execution path refers to a
specific process-killing method. Moreover, to reveal the conditions
for terminating the app process, we perform control-flow analysis
on each execution path to locate the conditional statements that af-
fect whether the killAPI will be executed or not. Subsequently, we
manually analyze the extracted conditional statements to disclose
how to evade the process-killing methods.

As an example, Figure 1 shows the execution path and the neces-
sary conditional statements of the process-killing method for killing
all background processes (KAP, in §3.3). We find the execution path
M1→M2→M3→M4→M5 that accesses the ProcessRecord.kill
API (i.e., M5). Then, we locate the conditions (i.e., C1 and C2) that
need to be satisfied to reach M5. After inspecting these conditional
statements, C2 in particular, we learn that, the priority of the app
process (i.e., the value stored in the setAdj of the corresponding
ProcessRecord instance) determines whether this app process will
be killed or not. If an app process’s priority does not satisfy C2, this
app process circumvents KAP.

Since the native applications in Android system can call the
kill function exported by libc.so, to discover the process-killing
methods in them, we build the call graph for each native application
by using SVF [27], and locate the kill function. Once found, we
reversely traverse the call graph from the kill function to get
the execution paths that reach this function. Then, we manually
analyze the source code of the methods in each execution path to
investigate how to evade the process-killing methods.
Result: We find 6 process-killing methods (in §3.3) and 4 of them
check the priority of the app process to decide whether it will be
killed or not. Meanwhile, we notice that, after killing an app process,
Android framework will call AMS’s updateOomAdjLocked method
to adjust the priority of current running app processes. To under-
stand howAMS calculates the priority of an app process, we perform
control-flow analysis on AMS’s computeOomAdjLocked method,
which will be called by updateOomAdjLocked. Specifically, since
the local variables, adj and schedGroup, are used to update curAdj
and curSchedGroup of the ProcessRecord instance, respectively,
we extract the conditional statements that decide whether their val-
ues will be changed. Then, we manually analyze these statements
to disclose why a process has a specific priority (in §3.2).

3.2 App Process Priority
Android determines the priority of an app process using the out-of-
memory (OOM) adjustment and the thread scheduling group. In the
following, we first introduce how the OOM adjustment of an app

process is set, which is relevant to the diehard methods proposed in
§4.2, and then describe 2 thread scheduling groups that are relevant
to the diehard methods proposed in §4.1. Table 1 summarizes the
difference cases of app processes.
OOM Adjustment. An app process with high priority usually has
a small OOM adjustment value and is less likely to be killed.
∗ FOREGROUND_APP_ADJ: The process of the foreground app (e.g.,
C01 and C02) is associated with this OOM adjustment.
∗ VISIBLE_APP_ADJ: The app process (e.g., C05) that hosts visible
activities is linked with this OOM adjustment.
∗ PERCEPTIBLE_APP_ADJ: The app process (e.g., C08) that hosts
perceptible components (e.g., foreground services connected with
visible notifications) is mapped to this OOM adjustment.
∗ SERVICE_ADJ: The priority of the app process (e.g., C12) that
hosts the running services is depicted by this OOM adjustment.
∗ CACHED_APP_MIN_ADJ: The app process (e.g., C13) that hosts in-
visible activities is assigned with this OOM adjustment.
Remark: If an app process satisfies multiple previous descriptions,
its OOM adjustment is the one that has the smallest value. For
example, the OOM adjustment of the app process, hosting a visible
activity and running a service, is VISIBLE_APP_ADJ.
Thread Scheduling Group. AMS uses it to manage the liveness of a
group of app processes. Normally, processes with the same priority
tend to be organized in one thread scheduling group.
∗ SCHED_GROUP_TOP_APP: This group contains the processes of fore-
ground apps (e.g., C01), which have relatively high priority.
∗ SCHED_GROUP_BACKGROUND: This group includes the processes of
background apps (e.g., C12), which have relatively low priority.

3.3 Exploring Process-Killing Methods
In this section, we elaborate on the internals of the 6 process-killing
methods discovered in §3.1, especially the conditions determining
whether or not an app process will be killed, and point out the
insights why the methods could be circumvented.
(1) Removing Recent-Task Item (RRT).
Usage: Users can swipe away an item presented in the Recent-Task
list to stop a recently accessed app.
Internal: RRT consists of 2 major steps. First, AMS removes the
TaskRecord object associated with the removed Recent-Task item
from ActivityStackSupervisor’s mRecentTasks field, which is
an array recording the TaskRecord object of each recently accessed
app. Second, AMS uses ActivityStackSupervisor (ASS), which
is the manager of activity stacks, to obtain the ProcessRecord ob-
jects associated with the app to be stopped. Once a ProcessRecord
object is found, ASS checks whether the process hosts activities.
If not, the process is the candidate to be killed. Otherwise, ASS
checks whether the activities hosted by the process belong to the
same activity task. If so, such process is the candidate as well. Be-
fore calling ProcessRecord’s kill method to terminate the candi-
date, ASS checks whether the process’s thread scheduling group is
SCHED_GROUP_BACKGROUND. If so, the process will be killed.
Remark: RRT cannot stop the app that does not have a Recent-Task
item. Moreover, it kills neither the app process that has multiple
activity tasks nor the app process whose thread scheduling group
is not SCHED_GROUP_BACKGROUND.
(2) Force-stopping App (FSA).

ASE ’20, September 21–25, 2020, Virtual Event, Australia Hao Zhou, Haoyu Wang, Yajin Zhou, Xiapu Luo, Yutian Tang, Lei Xue, and Ting Wang

Table 1: A summary of different cases of app processes.

OOM Adjustment Value Case Scheduling Group

FOREGROUND_APP_ADJ 0

C01: The process has a foreground activity, and the device is awake. SCHED_GROUP_TOP_APP (3)
C02: The process has a foreground activity, but the device is sleeping. SCHED_GROUP_BACKGROUND (0)
C03: The process has a service, to which another process with such an OOM adjustment is bound. SCHED_GROUP_DEFAULT (2)
C04: The process has a provider, which is acquired by another process with such an OOM adjustment. SCHED_GROUP_DEFAULT (2)

VISIBLE_APP_ADJ
100 C05: The process has a visible activity. SCHED_GROUP_DEFAULT (2)
≀ C06: The process has a service, to which another process with such an OOM adjustment is bound. SCHED_GROUP_DEFAULT (2)

200 C07: The process has a provider, which is acquired by another process with such an OOM adjustment. SCHED_GROUP_DEFAULT (2)

PERCEPTIBLE_APP_ADJ 200

C08: The process has a foreground service. SCHED_GROUP_DEFAULT (2)
C09: The process has an overlay window. SCHED_GROUP_DEFAULT (2)
C10: The process has a service, to which another process with such an OOM adjustment is bound. SCHED_GROUP_DEFAULT (2)
C11: The process has a provider, which is acquired by another process with such an OOM adjustment. SCHED_GROUP_DEFAULT (2)

SERVICE_ADJ 500 C12: The process has a service, which was started within the last 30 minutes. SCHED_GROUP_BACKGROUD (0)

CACHED_APP_MIN_ADJ 900 C13: The process has the stopped activity. SCHED_GROUP_BACKGROUD (0)

(a) Normal App. (b) Instant App.
Figure 2: App info interface for different types of apps.

Usage: Users can navigate to the App info interface and click the
Force stop button to stop an app. A debugger can use the shell
command, am force-stop, to achieve the same purpose.
Internal: FSA takes 3 steps to stop an app. First, AMS notifies the
instance of PackageManagerService (PMS) to make the target
app ignore the received broadcasts that were sent without car-
rying the flag, FLAG_INCLUDE_STOPPED_PACKAGES. Second, AMS
finds the ProcessRecord objects associated with the app and
calls kill method to terminate the processes. Third, AMS sends a
broadcast to instruct the instances of AlarmManagerService and
JobSchedulerService to clean up the pending tasks that were
previously submitted by the app. Meanwhile, the broadcast will be
received by NotificationManagerService, and the notifications
linked with the target app will be dismissed accordingly.
Remark: In normal cases, FSA can kill all running processes of
an app. However, we find that the instant app is an exception. As
shown in Figure 2b, the App info interface of an instant app does not
have the Force stop button. That is, FSA is unavailable for stopping
instant apps, and the alive instant apps can wake up other apps.
(3) Killing Background Processes (KBP).
Usage: An app with the permission KILL_BACKGROUND_PROCESSES
can terminate background app processes. More specifically, the
app first obtains the instance of ActivityManager and then calls
ActivityManager’s killBackgroundProcesses method to kill
background app processes. A debugger can execute the shell com-
mand, am kill, to accomplish the same task.
Internal: The workflow of KBP contains 2 steps. First, AMS retrieves
all alive ProcessRecord objects and examines the setAdj field of
each to determine whether a candidate will be killed. Precisely, if
the candidate’s OOM adjustment value is no smaller than that of
SERVICE_ADJ, it will be terminated. Second, AMS calls kill API in
ProcessRecord to kill the target.

Remark: The first step of KBP implies it cannot kill the process,
whose OOM adjustment value is smaller than that of SERVICE_ADJ.
(4) Killing All Background Processes (KAP).
Usage: A debugger can use the shell command, am kill-all, to kill all
app processes running in the background, because this command
makes AMS call its killAllBackgroundProcess method.
Internal: The workflow of KAP is similar to that of KBP, and the
difference lies in the criteria for finding the target app processes.
Precisely, KAP kills the app processes, whose OOM adjustment
values are no smaller than that of CACHED_APP_MIN_ADJ.
Remark: The app process, whose OOM adjustment value is smaller
than the value of CACHED_APP_MIN_ADJ, is excluded from the target
of KAP, and thus it will not be killed by KAP.
(5) Killing Specific Process (KSP).
Usage: An app or a debugger can kill a specific process according
to its PID by using the native kill function and the kill command,
respectively. Note that an app can just kill its own processes while
the privileged debugger does not have such constraints.
Internal: KSP calls the native kill function to terminate the target.
Remark: KSP cannot prevent the app from being waken up.
(6) Low Memory Killer (LMK).
Usage: If a running device’s available RAM becomes insufficient,
LMK’s native daemon will kill a few selected app processes.
Internal: LMK includes 2 major steps. First, according to the remain-
ing available RAM, it decides a threshold for the OOM adjustment
value. Second, it lists the app processes, whose OOM adjustment
values exceed the threshold. Among these processes, LMK uses
the native kill function to kill the one that occupies the most
amount of RAM. Then, LMK repeatedly executes these 2 steps until
no process’s OOM adjustment value exceeds the threshold.
Remark: The second step suggests that LMK rarely kills the app
process with a high priority (i.e., a small OOM adjustment value).

4 KEEPING APPS ALIVE
In this section, by leveraging insights in §3.3, we propose 7 diehard
methods, as listed in Table 2, to keep apps alive. Note that, if an
app has a process running in the system, the app is alive.

4.1 Manipulating Recent-Task Item
We propose 2 diehard methods that manipulate the items in the
Recent-Task list to evade RRT.

Demystifying Diehard Android Apps ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 2: Diehard methods for keeping apps alive.

Methods
Support Method for Killing App Process

Instant App RRT FSA KBP KAP KSP LMK

HTI ✓

PMI ✓

HFA ✓

HFS ✓

COW ✓

BRS ✓

ACP ✓

1 denotes that the method can prevent normal apps and instant apps from being killed; denotes
that the method can prevent normal apps or instant apps from being killed to a certain extent; denotes
that the method cannot prevent normal apps and instant apps from being killed.

• Hiding Recent-Task Item (HTI).
Design: Since RRT only stops the app that has an item in the Recent-
Task list, the app can hide the item to evade RRT.
Implementation: To hide the Recent-Task item, an app can set the
excludeFromRecents property of its main launchable activity to
true in its manifest file or code. For the latter, the app first ob-
tains the instance of ActivityManager and calls getAppTasks of
ActivityManager to get the AppTask object that is bound with the
Recent-Task item. Then, the app calls setExcludeFromRecents
defined in the AppTask class to remove the Recent-Task item.
• Producing Multiple Recent-Task Items (PMI).
Design: Since RRT kills the process that organizes the hosted activ-
ities in an activity Task, to bypass it, the app can create multiple
activity Tasks, which results in multiple Recent-Task items.
Implementation: To make Android create an additional activity Task
for storing the activity, the Intent object used for launching the
target activity should carry the flag FLAG_ACTIVITY_NEW_TASK [23].
Note that if the taskAffinity property of the source activity (i.e.,
intent sender) and the one of the target activity (i.e., intent receiver)
are the same, Android will not create the new Task. To prevent this
circumstance, the app should let the taskAffinity of the target
activity be different from that of the source activity.

4.2 Escalating App Process Priority
Since RRT, KBP, KAP, and LMK kill app processes according to
their priorities (i.e., the OOM adjustment or the thread scheduling
group) as described in §3.3, we propose 5 methods to escalate an
app process’s priority for preventing the process from being killed
or decreasing its probability of being killed.
• Holding Foreground Activity (HFA).
Design: As shown in Table 1, the app process (i.e., C01 or C02)
holding the foreground activity has the smallest OOM adjustment
value. Such processes will not be killed by KBP and KAP because
they select app processes with lower priorities.
Implementation: To let a background app process hold a foreground
activity, the app can declare or register a receiver that listens to
system/app broadcasts. Once the app receives the broadcast, it will
start an activity in the foreground. Diehard apps can further make
HFA hard to be noticed. For example, the apps listen to the system
broadcast ACTION_SCREEN_OFF and start the foreground activity
when the device screen turns off or launch a very small activity.
• Hosting Foreground Service (HFS).

Design: The OOM adjustment for the app process (i.e., C08) that
hosts a foreground service is PERCEPTIBLE_APP_ADJ, whose value
is smaller than that of SERVICE_ADJ and CACHED_APP_MIN_ADJ.
Hence, such app processes will not be killed by either KBP or
KAP. Meanwhile, since the relevant thread scheduling group is
SCHED_GROUP_DEFAULT, RRT cannot kill such app processes.
Implementation: An app first launches a service by creating an
Intent object and calling startService or bindService. Then,
to make the service foreground, in the onCreate, onStartCommand,
or onBind callback of the service, the app creates a Notification
object and passes it to the startForeground API, which will show
a notification to inform the user that there is a foreground service.
• Creating Overlay Window (COW).
Design: An app process (i.e.,C09) can launch an overlay window [17,
22], which will be rendered on top of any other app windows
(e.g., interfaces of app activities), to adjust its thread scheduling
group to SCHED_GROUP_DEFAULT and elevate its OOM adjustment
to PERCEPTIBLE_APP_ADJ. Consequently, such app processes will
not be killed by RRT, KBP, and KAP.
Implementation: Before Android 8.0, to make an app window be-
come an overlay, the app calls setAttribute or setType defined
in the Window class to specify the window’s type with TYPE_PHONE,
TYPE_SYSTEM_ALERT, TYPE_SYSTEM_ERROR, or TYPE_TOAST. For
newly released Android systems (i.e., those published no earlier
than Android 8.0), TYPE_APPLICATION_OVERLAY is usually adopted
to construct the overlay window [32] because the aforementioned
window types are deprecated.
• Binding Running Service (BRS).
Design: An app can run its services in separate processes (e.g.,
service processes) to reduce the resource occupation of its main
process. Since the service process will usually not host any user per-
ceptible components (e.g., UI), its OOM adjustment value is larger
than that of PERCEPTIBLE_APP_ADJ. Hence, to prevent the service
process from being killed, the app needs to escalate the priority of
its service processes. After scrutinizing how AMS calculates and
updates the priority of the app process, we find that the priority of
the service process can be affected by the priorities of its client pro-
cesses (i.e., C03, C06, and C10) that bind themselves to the service.
Specifically, if the OOM adjustment value of the service process
is bigger than the values of some of its client processes, its value
will be adjusted to the smallest one of all its client processes, and
the thread scheduling group will be set to SCHED_GROUP_DEFAULT.
Thus, the service process will not be killed by RRT, KBP, and KAP.
Implementation: An app process calls bindService to bind itself to
the service that is running in a separate process. Note that once all
client processes disconnect themselves from the service by calling
unbindService, the service process’s priority will not be affected
by the client processes.
• Acquiring Published Content Provider (ACP).
Design: A content provider can run in a separate app process (e.g.,
provider process), and its priority will be affected by its client
processes (i.e., C04, C07, and C11). The OOM adjustment and the
thread scheduling group of the provider process will be changed
following the same rules as the service process mentioned in BRS.
Thus, the provider process will not be killed by RRT, KBP, and KAP.
Implementation: To connect itself to the provider process, the
app process calls the acquireContentProviderClient API or

ASE ’20, September 21–25, 2020, Virtual Event, Australia Hao Zhou, Haoyu Wang, Yajin Zhou, Xiapu Luo, Yutian Tang, Lei Xue, and Ting Wang

Table 3: Diehard methods for waking up apps.

Methods
Support Method for Killing App Process

Instant App RRT FSA KBP KAP KSP LMK

CSS ✓

MSB ✗

LAS ✓

UJS ✗

MAB ✓

1 Meanings of , , and are the same as those in Table 2.

the acquireUnstableContentProviderClient API, which are de-
clared in the ContentResolver class. Note that the priority of the
provider process will no longer be affected by its client processes if
they are disconnected by calling the APIs, close or release, which
are provided by the ContentProviderClient class.

5 WAKING UP APPS
Since none of the methods in Table 2 can prevent an app from being
killed by KSP, solely keeping apps alive alone is not enough. Hence,
diehard apps also use other methods to wake themselves up after
being stopped. Note that, if a component of the stopped app has
been launched, the app is waken up.

We propose 5 methods listed in Table 3 to wake up diehard apps.
These methods are divided into 3 categories for different scenarios.
First, the app utilizes its own service (e.g., a sticky service) to wake
itself up (in §5.1). Since this method cannot relaunch normal apps
stopped by FSA, we further propose methods in other categories.
Second, the app leverages system components to wake itself up.
For example, the app can use Alarm service to periodically launch
its component to wake itself up. Note that Android system sets
several constraints for apps to use the system components. For
example, some of the system components are not available for
instant apps and cannot timely wake up the app. Hence, apps may
adopt the method in the third category. Third, the app relies on
other apps to wake it up. That is, the stopped app waits for the
wake-up signal (e.g., broadcasts) from other apps. Once received,
the signal launches the stopped app’s component that responds to
the signal, and then the app is waken up.

5.1 Utilizing App Component
A stopped app can wake itself up through its specific components.
• Constructing Sticky Service (CSS).
Design: The unique feature of the sticky service makes it suitable
for executing long-time tasks [10]. Specifically, if the process run-
ning a sticky service is killed after the service has been started
(i.e., its onStartCommand callback has been executed), Android will
relaunch the service. Thus, diehard apps, which are stopped by RRT,
KBP, KAP, KSP, or LMK, can use the sticky service to wake them-
selves up. However, this method cannot wake up the app stopped by
FSA, because FSA makes Android ignore the app’s sticky services.
Implementation: To turn a started service to a sticky one, the ser-
vice’s onStartCommand callback should return one of the follow-
ing constants: START_STICKY_COMPATIBILITY, START_STICKY, or
START_REDELIVER_INTENT. Using the former 2 constants, the ser-
vice can be relaunched by the framework multiple times whereas
the service can be relaunched only once if the last constant is

Table 4: Partial System broadcasts for implementing MSB.

Action Name System Event

ACTION_BOOT_COMPLETED The device has finished booting.

ACTION_LOCALE_CHANGED The device’s locale has changed.

ACTION_MEDIA_MOUNTED An external media has been mounted.

ACTION_NEW_OUTGOING_CALL An outgoing call is about to be placed.

ACTION_TIMEZONE_CHANGED The timezone has changed.

used. To ensure the onStartCommand callback will be invoked by
the framework, the app should start the sticky service using the
startService API. Note that the relaunched service is a back-
ground service by default, which will be stopped by AMS if it has
been running in the background for more than a minute [1]. To
tackle this issue, the diehard app can use our method HFS in §4.2
to bring the relaunched service to the foreground.

5.2 Leveraging System Functionality
Diehard apps can be waken up by exploiting particular system
functionality (e.g., system services and broadcasts). We elaborate 3
diehard methods based on app-accessible system functionality.
• Monitoring System Broadcast (MSB).
Design: An app can use broadcast receivers to monitor system
events [36]. Once a concerned event happens, the receiver will be
launched. Thus, the app, which is stopped by RRT, KBP, KAP, KSP,
or LMK, can use this method to wake itself up. However, since FSA
makes the stopped app only receive the broadcasts that carry the
flag, FLAG_INCLUDE_STOPPED_PACKAGES, which is not included in
the system broadcasts that can be received by the app [6], MSB
cannot wake up normal apps stopped by FSA.
Implementation: The broadcast receiver can be declared in the
app’s manifest file or dynamically registered by code through the
framework API registerReceiver. Note that, if the app has been
stopped, only the receivers declared in its manifest file can be
launched, because Android will only inspect the app’s manifest file
to determine whether its receivers can respond to the system broad-
casts [2]. Thus, a few system broadcasts (e.g., ACTION_SCREEN_ON),
which can only be received by dynamically registered receivers,
cannot wake up the app. Moreover, from Android 8.0, statically
declared receivers are no longer permitted to receive the implicit
broadcasts (e.g., most of system broadcasts), which do not specify
the package name of the target receiver [1]. Hence, only the system
broadcasts, which are exempted from these constraints [6], can be
used to implement MSB, and we list partial of them in Table 4.
• Leveraging Alarm Service (LAS).
Design: AlarmManager allows an app to repeatedly launch its com-
ponent for executing a certain task. Accordingly, the app, which is
stopped by RRT, KBP, KAP, KSP, and LMK, can use this function to
wake itself up . However, LAS cannot wake up the app stopped by
FSA, because FSA removes the task pending in the Alarm service.
Implementation: To repeatedly launch an app component, the app
first constructs a PendingIntent task, which specifies the app
component to be launched. Then, the app calls setRepeating or
setInexactRepeating declared in the AlarmManager class to set
the time interval for AlarmManagerService to schedule the task.
• Using Job Scheduling Service (UJS).

Demystifying Diehard Android Apps ASE ’20, September 21–25, 2020, Virtual Event, Australia

1 // The value of the "intervalMillis" field of oldJob is no smaller than 15*60*1000.
2 public void exploit(JobInfo oldJob) {
3 // Step 1: Store the original JobInfo object using a Parcel container.
4 Parcel in = Parcel.obtain();
5 oldJob.writeToParcel(in, PARCELABLE_WRITE_RETURN_VALUE);
6 // Step 2: Revise the "intervalMillis" value to a smaller value.
7 Parcel out = Parcel.obtain();
8 // reviseParcel(*) is a customized method manipulates the buffer in the Parcel.
9 reviseParcel(in, PARCELABLE_WRITE_RETURN_VALUE, out);

10 // Step 3: Create the JobInfo object using the buffer of the Parcel container.
11 JobInfo newJob = JobInfo.CREATOR.createFromParcel(out);
12 jobScheduler.schedule(newJob);
13 }

Fig. 2: Adjusting the time interval value stored in JobInfo.

Implementation: The broadcast receiver can be statically
declared in the app’s manifest file or dynamically registered
using the framework API, registerReceiver. However, once
the process has been killed, the app can only leverage statically
declared receivers to wake up the dead app process, because the
Android framework just inspects the manifest file of the app to
determine whether there is a declared receiver that can respond
the sent system broadcast if the app is not currently running in
the Android system. Therefore, some of system broadcasts
(e.g., ACTION_SCREEN_ON), which can only be received by
dynamically registered receivers, are not applicable for waking
up the suspended app process. Moreover, after Android 8.0,
the system no longer permits the statically declared receiver to
capture implicit broadcasts (e.g., most of system broadcasts),
which do not explicitly specify the package name of the
broadcast receiver [2]. Hence, only a few system broadcasts
(e.g., ACTION_BOOT_COMPLETED), which are exempted from this
constraint [6], can be adopted to implement MSB.
(2) Leveraging Alarm Service (LAS). Design: The app may
use the proxy of the AlarmManagerService instance, which
is provided by the Android framework, to construct scheduled
tasks that can periodically relaunch the dead app process. How-
ever, since the tasks, pending in the AlarmManagerService
instance, will be removed if the app has been killed by FSP,
this approach is merely applicable for waking up app process
suspended by RRT, KBP, KAP, KSP, or LMK.

Implementation: To make the AlarmManagerService in-
stance execute the scheduled task, the diehard app will first
create a PendingIntent object, and then call the corresponding
APIs, setRepeating or setInexactRepeating, which are
declared in the AlarmManager class, to set the time interval for
scheduling the created task. However, after Android 6.0, the
power-saving functionality of the Android system, especially
the Doze and the App Standby [7], brings negative effects to the
task scheduling process of AlarmManagerService. To mitigate
this issue, the REQUEST_IGNORE_BATTERY_OPTIMIZATIONS per-
mission should be included in the manifest file, and the app may
explicitly pop up a dialog for the user to grant the permission,
which lets itself be exempted from the power-saving policies.
(3) Using Job Scheduling Service (UJS). Design: Towards
Android systems after Android 5.0, the normal app may imple-
ment a JobService component, customize a JobInfo object,
and submit the JobInfo object to the JobSchedulerService
instance, to instruct the Android system to periodically execute

a certain job, e.g., waking up the dead app process. However,
since the JobService component of the instant app cannot be
accessed according to its package name and class name, in
practice, we fail to create a proper JobInfo object for launching
the JobService component of the instant app. Moreover, the
scheduled job accepted by the JobSchedulerService instance
will be canceled if the app is killed by FSP. Therefore, we
consider this approach is only applicable for relaunching the
app process suspended by RRT, KBP, KAP, KSP, and LMK.

Implementation: Commonly, the diehard app first creates
the JobInfo object with the help of the JobInfo.Builder
class, and then invokes the setPeriodic method to specify
the time interval for periodically carrying out the work defined
in the customized JobService component. However, after
Android 8.0, the setPeriodic method will adjust the minimum
time interval (i.e., the value stored in the intervalMillis
field of the JobInfo object) to fifteen minutes due to the
consideration of optimizing the battery usage. To break this
limit, we put forward a method that exploits the inconsistency
of time interval examination conducted by the local JobInfo
object and the remote JobSchedulerService instance2. More
specifically, the Android system only checks the validity of the
specified time interval in the client side when the diehard app
calls the setPeriodic method, rather than in the server side
when the JobSchedulerService instance is going to schedule
the periodic job according to the time interval stored in the
JobInfo object. Based on this insight, Figure 2 illustrates a
proof-of-concept (PoC) that can be adopted by the diehard app
to bypass the time interval constraint. In detail, we notice that
if the JobInfo object is created using the buffer stored in the
Parcel container, no invocation to setPeriodic is required,
thus, the time interval will not be inspected. Accordingly, we
abuse the accessible JobInfo object creator, JobInfo.CREATOR
(shown in line 11 of Figure 2), which is provided by the Android
framework, to implement the exploitation.

C. Relying on Third-party App

One of intuitive approaches for waking up the suspended app
process is to rely on the operations performed by the third-party
or the cooperated app. Based on the insight that starting any one
of app components may result in the creation of a particular app
process, there are at least four approaches for an app to launch
the process of another app, including launching the target
app’s activity, starting the corresponding app service, accessing
the published content provider, and sending the customized
broadcast to trigger the statically declared broadcast receiver.
However, since the prior three approaches are normally adopted
by the app to launch a specific app process, we consider most
of these behaviors are normal because it is highly possible
that these operations are conducted according to the function
requirement of the third-party app, and thus, we exclude them
from diehard behaviors. To the opposite, the last approach may
trigger a bunch of irrelevant broadcast receivers and launch
multiple app processes. Hence, we treat the app, declaring

2In the latest release Android 10.0, such the vulnerability has been fixed.

7

Figure 3: Adjusting the time interval stored in JobInfo.

Design: Since Android 5.0, an app can ask Android system to pe-
riodically execute a job by defining it in the app’s JobService
component. More specifically, the app submits a JobInfo object
to notify JobSchedulerService to launch the JobService com-
ponent and execute the job. Thus, the app, which is stopped by
RRT, KBP, KAP, KSP, or LMK, can use JobSchedulerService to
relaunch its JobService component and wake itself up. However,
UJS cannot wake up the app stopped by FSA, because FSA cancels
the scheduled job accepted by JobSchedulerService. Moreover,
since the JobService component of the instant app cannot be ac-
cessed by JobSchedulerService via the package name and class
name [7], UJS cannot wake up instant apps.
Implementation: Diehard apps first create the JobInfo object by
using the JobInfo.Builder class, and then invokes setPeriodic
to specify the time interval for periodically performing the job
defined in the JobService component. Note that, after Android
8.0, setPeriodic adjusts the minimum time interval (i.e., the
value stored in the intervalMillis field of the JobInfo object)
to 15 minutes for optimizing the battery usage. To bypass this
limit, we discover and exploit the inconsistency of the time in-
terval check conducted by the local JobInfo object and the re-
mote JobSchedulerService instance1. Specifically, Android only
checks the validity of the time interval in the client side when
the app calls setPeriodic, rather than in the server side when
JobSchedulerService is going to schedule the job according to
the time interval stored in the JobInfo object. Figure 3 illustrates
a proof-of-concept (PoC) that can be adopted by the diehard app to
bypass the time interval constraint.

5.3 Relying on Third-party Apps
A diehard app can be waken up by colluded third-party apps, which
can launch the activity, start the service, or acquire the content
provider of the diehard app by explicitly specifying the names of
these components. Since the relationship between the diehard app
and the colluded app can be easily figured out according to the
explicitly specified component names, we do not study this method
in this paper. Instead, we design an approach for third-party apps
to implicitly wake up the diehard app.
• Monitoring App Broadcast (MAB).
Design: An app can use the receiver declared in its manifest file
to monitor the broadcast from third-party apps to wake itself up.
Unlike system broadcasts, a well-crafted implicit broadcast can
wake up the app stopped by FSA. Hence, the apps stopped by any
of 6 process-killing methods can use MAB to wake themselves up.
1In the latest released Android 10.0, such vulnerability has been fixed.

Input
Manifest

Byte
co

de Bytecode Analyzer

Launchable Component

Def-Use Chain

Manifest Parser

Exported Component Monitored Broadcast

Particular Component

Callable Method

Output

Detector
Detection Rules

HTI

......

Declared Permission

Call Graph

Detection Result

HFA

PMI

Figure 4: The overview of DiehardDetector.

Implementation: In accordance with the design, the broadcast re-
ceiver needs to be statically declared in the manifest file. The im-
plicit app broadcast sent by other apps should satisfy 2 requirements.
First, the broadcast should bypass the implicit broadcast constraint
since Android 8.0 (i.e., Android no longer permits apps to send
implicit broadcasts). Third-party apps can circumvent it by send-
ing broadcast with the flag FLAG_RECEIVER_INCLUDE_BACKGROUND.
Second, the app stopped by FSA should be able to receive the implicit
broadcast. To achieve it, the third-party apps should let the implicit
broadcast carry the flag FLAG_INCLUDE_STOPPED_PACKAGES.

6 DETECTING DIEHARD APPS
We are interested in how prevalent the diehard methods are used
by apps in the wild. To conduct a large-scale study on it, we develop
a new tool named DiehardDetector to check whether apps have
employed the diehard methods described in §4 and §5. After giving
an overview of DiehardDetector in §6.1, we detail the modules of
DiehardDetector in §6.2 - §6.4.

6.1 Overview
As shown in Figure 4, DiehardDetector consists of 3 modules: man-
ifest parser, bytecode analyzer, and detector. It takes in an app’s
APK file and outputs the diehard methods used by this app if any.
• Manifest Parser (§6.2): It parses the app’s manifest file to col-
lect the information about exported app components to facilitate
the subsequent static analysis on the app’s Dex file. To obtain the
necessary information for detecting deihard methods, this mod-
ule also retrieves the broadcasts monitored by the app, finds the
app components with special attributes, and collects the declared
permissions.
• Bytecode Analyzer (§6.3): It first constructs the call graph and
builds the def-use chain by analyzing the app’s Dex files. Then, it
find the app’s components, which cannot be launched, to prune
invalid call graph edges caused by the conservative graph construc-
tion strategy [12], which assumes that all the app’s components
are launchable. Subsequently, it collects the nodes, which denote
methods, including app defined methods and framework APIs, in
the pruned call graph for identifying diehard methods.
• Detector (§6.4): Taking the results of the manifest parser and
the bytecode analyzer as inputs, this module discovers the diehard
methods used by the app according to the rules defined for the
diehard method described in §4 and §5.

6.2 Parsing Manifest File
We collect the following information from the manifest file.
• Exported App Components. To collect app components that can
be launched externally, DiehardDetector inspects the exported

ASE ’20, September 21–25, 2020, Virtual Event, Australia Hao Zhou, Haoyu Wang, Yajin Zhou, Xiapu Luo, Yutian Tang, Lei Xue, and Ting Wang

attribute of each declared app component and stores exported ones
to the set Sexpor ted . Note that, if a component has intent-filters,
it can receive external intents, and thus DiehardDetector also saves
such components to Sexpor ted .
• Monitored Broadcasts. To obtain the broadcasts monitored by
the statically declared receivers, DiehardDetector examines the
intent-filters of each broadcast receiver, and puts the system
broadcasts and app broadcasts to 2 sets, namely Ssyscast and
Sappcast , respectively.
• Special App Components. To find the app components that
are relevant to diehard methods, DiehardDetector resolves each
app component’s attributes. Precisely, the service or the content
provider with the process attribute, which makes the component
run in a separate process, will be stored to the set Sprocess . More-
over, the activity with the taskAffinity attribute, which allows
the activity to be placed in a separate activity Task, will be saved to
the set Saf f inity . If an activity enables its excludeFromRecents
attribute, which makes the corresponding activity Task not be asso-
ciated with a Recent-Task item, such the activity will be recorded
to the set Sr ecents .
• Declared Permissions. To identify the diehard methods (e.g.,
COW) that need specific permissions, DiehardDetector parses the
uses-permission tags in the manifest file and stores the declared
permissions to the set Spermission .

6.3 Analyzing Bytecode
To facilitate the detection in §6.4, DiehardDetector performs static
analysis to construct an accurate call graph, build def-use chain,
and identify launchable components as well as callable methods.
• Call Graph: To find the execution path for identifying HFA and
HFS, DiehardDetector first uses FlowDroid [12] to build the app’s
call graph and then prune invalid edges.

Given an app, FlowDroid creates an entry-point and connects
it with the callbacks of app components under the assumption
that all app components are launchable. That is, the callbacks of
app components can always be executed. Then, FlowDroid finds the
methods that are reachable from the callbacks to build the call graph.
However, since some app components can never be launched, the
call graph contains invalid edges, which may bring false positives
to the detection results of diehard apps.

To prune invalid edges, DiehardDetector finds launchable app
components, keeps the edges that are reachable from the callbacks
of launchable app components, and removes the others (i.e., invalid
edges). Normally, there are 3 types of launchable app components:
(1) exported app components, which can be launched from the ex-
ternal (e.g., users or other apps); (2) the app components, which
can be launched by exported app components; (3) the app com-
ponents, which can be launched by launchable app components.
Accordingly, since exported app component are always launchable,
DiehardDetector finds the launchable unexported app components
to prune invalid edges.

The process for pruning invalid edges consists of 3 steps. In the
first step, DiehardDetector finds the unexported app components
that can be launched by other app components. In detail, Diehard-
Detector locates the framework APIs (e.g., those listed in Table 6) for
launching the app components. Then, DiehardDetector performs

def-use analysis on the Intent objects past to these APIs because
the uses of these Intent objects contain the names of the launchers
(i.e., the app components that launch the unexported app compo-
nents) and the unexported app components to be launched. In the
second step, to ensure the launched unexported app components
are launchable app components, DiehardDetector checks whether
they are launched by launchable app components. More specifically,
DiehardDetector inspects whether the launchers of the unexported
app components are launchable app components. If so, such the
unexported app components are launchable app components. In the
third step, to prune invalid edges, DiehardDetector traverses the call
graph from the callbacks of identified launchable app components,
and then removes the edges that cannot be accessed.
• Def-Use Chain: To find the variable definitions and uses for
detecting COW, BRS, and ACP, DiehardDetector builds def-use
chains [18] of selected variables. More specifically, to get the win-
dow type of the created overlay for detecting COW, DiehardDetec-
tor builds def-use chains of the variables that will be assigned
to the a parameter of Window’s setAttributes method or the
type parameter of Window’s setType method. To find the app ser-
vices that will not be unbound for detecting BRS, DiehardDetec-
tor builds def-use chains of ServiceConnection objects, which
will be passed to the bindService API or the unbindService
API. To find the content providers that will not be released or
closed for detecting ACP, DiehardDetector builds def-use chains of
ContentProviderClient objects, which are either the returned ob-
jects of acquireContentProviderClient or the base objects of in-
vocations to ContentProviderClient’s release/close method.

Moreover, to find the app components that will be launched
using special Intent flags, which are essential for identifying PMI,
CSS, and MAB, DiehardDetector builds def-use chains of Intent
objects passed to framework APIs that are used to launch app com-
ponents. DiehardDetector stores the activities launched with the
FLAG_ACTIVITY_NEW_TASK flag to the set Stask , saves the services
started by startService to the set Sstar tService , and puts the
broadcasts sent with flags, FLAG_RECEIVER_INCLUDE_BACKGROUND
and FLAG_INCLUDE_STOPPED_PACKAGE to the set Ssndcast .
• Launchable Components: To find launchable app components
for identifying HFA and HFS, DiehardDetector examines the call
graph to get the launchable app components’ callbacks, whose
method signatures contain the names of the app components.
DiehardDetector saves the launchable app components to the set
Slaunchable .
• Callable Methods: To get the callable methods for recognizing
HTI, COW, LAS, and UJS, DiehardDetector stores the nodes in the
call graph, each of which corresponds to a method that is reachable
from callbacks of launchable app components, to the set Scallable .

6.4 Detecting Diehard Methods
DiehardDetector identifies various diehard methods according to
the rules summarized in Table 5. We explain them as follows.
(1) HTI: DiehardDetector examines Sexpor ted and Sr ecents to find
whether an exported activity’s excludeFromRecents attribute is
set to true. If no activity is found, DiehardDetector will inspect
Scallable to find whether setExcludeFromRecents can be called.

Demystifying Diehard Android Apps ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 5: Core rules for detecting diehard methods.
Behavior Detection Rule

HTI (Sexpor ted ∩ Sr ecents , ∅) ∨ ((AppTask.setExcludeFromRecents ∈ Scallable) ∧ (arдs[0] = true))

PMI (Saf f inity ∩ Stask) , ∅

HFA ∃ receiver, (receiver ∈ Slaunchable) ∧ ((path(onReceive, *.startActivity) , ∅) ∨ (path(onReceive, PendingIntent.getActivity) , ∅))

HFS ∃service, (service∈Slaunchable)∧((path(onCreate,startForeground),∅)∨(path(onBind,startForeground),∅)∨(path(onStartCommand,startForeground),∅))

COW (SYSTEM_ALERT_WINDOW∈Spermission)∧(((Window.setAttributes∈Scallable)∧(arдs[0].type≥TYPE_PHONE))∨((Window.setType∈Scallable)∧(arдs[0]≥TYPE_PHONE)))

BRS ∃ serviceConnection, (serviceConnection ∈ Sbind) ∧ (serviceConnection < Sunbind)

ACP ∃ contentProviderClient, (contentProviderClient ∈ Sacquire) ∧ (contentProviderClient < (Sr elease ∪ Sclose))

CSS ∃ service, ((service ∈ Sexpor ted) ∨ (service ∈ Sstar tServ ice)) ∧ (service ∈ Sst icky)

MSB ∃ broadcast, (broadcast ∈ system broadcasts that are exempted from the implicit broadcast constraint) ∧ (broadcast ∈ Ssyscast)

LAS (AlarmManager.setInexacRepeating ∈ Scallable) ∨ (AlarmManager.setRepeating ∈ Scallable)

UJS JobInfo$Builder.setPeriodic ∈ Scallable

MAB ((Sappcast ∩ Ssndcast) , ∅) ∧ (Ssndcast comes from another app)

1 The syntax args[index] returns the specific argument of the callable method; The syntax path(src,tgt) obtains the invocation chains that start from the src method and end with the tgt method.

Table 6: Partial APIs for launching app components.
Component Framework APIs

Activity
Context.startActivity(Intent)
Activity.startActivity(Intent)

PendingIntent.getActivity(Context,int,Intent,int)

Service
Context.startService(Intent)

PendingIntent.getService(Context,int,Intent,int)
Context.bindService(Intent,ServiceConnection,int)

Broadcast
Receiver

Context.sendBroadcast(Intent)
PendingIntent.getBroadcast(Context,int,Intent,int)

Context.registerReceiver(BroadcastReceiver,IntentFilter)

If any one of conditions is satisfied, which implies the app will hide
its Recent-Task item, HTI is detected.
(2) PMI: If an activity is included in both Saf f inity and Stask , PMI
is detected, because launching the activity will let the app have mul-
tiple activity Tasks, corresponding to multiple Recent-Task items.
(3) HFA: DiehardDetector analyzes the call graph to decide whether
the onReceive callback of a launchable broadcast receiver will call
PendingIntent’s startActivity or getActivity to launch the
activity. If found, HFA is recognized, because a foreground activity
can be launched when the app is running in the background.
(4) HFS: DiehardDetector detects HFS by examining callbacks (i.e.,
onCreate, onBind, and onStartCommand) of each app service in
Slaunchable to determine whether startForeground will be in-
voked by the callbacks. If so, it denotes that the app will launch the
foreground service, and thus HFS is detected.
(5) COW: DiehardDetector first checks Spermission to find out
whether the SYSTEM_ALERT_WINDOW permission has been requested
by the app. If so, DiehardDetector analyzes the def-use chains
of variables passed to the Window’s setAttributes or setType
method to get the type of the window created by the app. If the
window type’s value is no smaller than that of TYPE_PHONE, COW
is found because the app will create an overlay [32].
(6) BRS: The core for detecting BRS is to find the remote app service
that can be connected through bindService, and such connection
will never be broke via unbindService. Accordingly, DiehardDetec-
tor analyzes the def-chains of ServiceConnection objects passed
to bindService or unbindService, and stores the found variable
definitions to sets, Sbind and Sunbind , respectively. If the intersec-
tion of these two sets is not a null set, which implies some service
bindings will never be broken, DiehardDetector then analyzes the

def-use chains of Intent objects passed to bindService to find
the bound service. If the service is also included in Sprocess , the
remote service will use BRS to escalate its process priority.
(7) ACP: DiehardDetector identifies ACP by finding the acquired
ContentProviderClient objects that will not be released or closed.
We store the definitions of the acquired objects (i.e., the returned
objects of either acquireUnstableContentProviderClient or
acquireContentProviderClient), the closed objects (i.e., the base
objects of the invocations to ContentProviderClient’s close
method), and the released objects (i.e., the base objects of the in-
vocations to ContentProviderClient’s release method), to the
sets Sacquire , Sclose , and Sr elease , respectively. If there is an ob-
ject, which is included in Sacquire but is excluded from Sr elease
and Sclose , and its corresponding content provider is included in
Sprocess , we find a remote content provider that will use ACP to
elevate its process priority.
(8) CSS: DiehardDetector examines the return value of each app
service’s onStartCommand callback to find sticky services, and
stores them to the set Sst icky . If the intersection of Sst icky and
Sstar tService is not a null set, CSS is recognized, because the app
will start the sticky service by using startService,
(9) MSB: If the app declares receivers to monitor the system broad-
casts, which are exempted from the implicit broadcast constraint,
we consider that such an app implements MSB.
(10) LAS: To recognize LAS, DiehardDetector inspects Scallable
to find out whether setRepeating or setInexactRepeating de-
clared in the AlarmManager class will be called by the app. If so, it
suggests the app will use Alarm service to relaunch its component.
(11) UJS: DiehardDetector checks Scallable to figure out whether
the setPeriodic method defined in the JobInfo$Builder class
will be called by the app. If so, the JobService component of the
app will be relaunched, and thus UJS is found.
(12) MAB: If an app broadcast included in Sappcast is presented in
Ssndcast of another app, MAB is detected because the app under
examination listens to the well-crafted broadcast from another app,

7 EVALUATION
In this section, we evaluate the applicability of our diehard methods,
the performance of DiehardDetector, and the prevalence of diehard
apps in the wild by answering the following 3 research questions.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Hao Zhou, Haoyu Wang, Yajin Zhou, Xiapu Luo, Yutian Tang, Lei Xue, and Ting Wang

Table 7: Diehard methods found in data-2k apps.

Behavior #app #app’ ∆app Behavior #app #app’ ∆app

HTI 118 118 +0 ACP 0 0 +0

PMI 10 13 +3 CSS 72 91 +19

HFA 2 2 +0 MSB 452 452 +0

HFS 139 240 +101 LAS 158 165 +7

COW 11 14 +3 UJS 19 19 +0

BRS 0 0 +0 MAB 0 0 +0

RQ1: Do our diehard methods work on most popular Android ver-
sions, ranging from Android 5.1 to Android 10.0?
RQ2: How is the performance of DiehardDetector?
RQ3: How prevalent are diehard apps?

Data Set: We use 3 data sets including data-3, data-2k, and data-80k
for answering the 3 research questions, respectively. To answer
RQ1, we developed a normal app and an instant app, both of which
implement all available diehardmethods for their app types.We also
developed an auxiliary normal app for verifying MAB. To answer
RQ2, we downloaded 2,080 open-source apps from F-Droid [4] to
form the benchmark. To answer RQ3, we randomly crawled 81,237
apps from Google Play [5].

7.1 RQ1: Applicability of Diehard Methods.
Methodology: To assess the applicability of our diehard methods,
we run each app in data-3 on various versions of official Android
systems, which are released by Google.
Result: All our diehard methods can prolong the liveness time of
apps running on the official Android systems, ranging from 5.1 to
10.0. Since Android 10.0 has patched the vulnerability in the time
interval check (mentioned in §5.2), we cannot change the minimum
time interval (15 mins) for JobSchedulerService to execute the
periodic job and thus UJS cannot timely relaunch the app.

Answer to RQ1: All our 12 diehard methods are applicable to
popular Android systems, ranging from Android 5.1 to An-
droid 10.0. However, Android 10.0 constraints the ability of UJS.

Table 8: Apps using diehard methods in data-80k.

Behavior #app Ratio Behavior #app Ratio

HTI 1,878 10.79% ACP 0 0.00%

PMI 424 2.44% CSS 1,933 11.14%

HFA 125 0.72% MSB 12,413 71.30%

HFS 2,243 12.88% LAS 6,452 37.06%

COW 264 1.52% UJS 130 0.75%

BRS 21 0.12% MAB 0 0.00%

Table 9: Number of diehard methods used in each app.

data-2k (632) data-80k (17,410)
Number #app Ratio Number #app Ratio

1 363 57.44% 1 11,213 64.41%

2 205 32.44% 2 4,444 25.53%

3 50 7.91% 3 1,375 7.90%

4 12 1.90% 4 272 1.56%

5 2 0.31% 5 75 0.43%

6 0 0.00% 6 31 0.17%

7.2 RQ2: Performance of DiehardDetector.
Methodology: To evaluate the performance of DiehardDetector,
we first use it to analyze the apps in data-2k, and then manually
analyze the source code of the apps to determine whether they do
(or do not) have diehard behaviors. More specifically, we manually
analyzed 500 randomly selected apps in data-2k, 250 of which are
detected diehard apps while the remaining 250 are normal apps.
Result: Table 7 lists the detection results, where #app denotes the
number of apps having a specific diehard behavior. Since FlowDroid
fails to process 9 apps in data-2k due to the over-long analysis time
(> 30 mins), DiehardDetector successfully analyzed 2,071 apps, and
found 632 (30.52%) of them use diehard methods.

After analyzing 250 detected diehard apps manually, we did not
find any false positives. For the other 250 apps, we found 14 false
negatives, which make FlowDroid throw an exception when con-
structing the call graph. Consequently, their call graphs include
neither nodes nor edges so that DiehardDetector cannot detect
their diehard methods (except for PMI) and thus treats them as non-
diehard apps. Accordingly, the precision and the recall of Diehard-
Detector is 100% and 94.70%, respectively.

To evaluate the effect of pruning the call graph (§6.3), we compare
the detection results (#app) with those (#app′) achieved without
removing invalid call graph edges. Specifically, ∆app shows the
increased number of identified apps having a specific diehard be-
havior (i.e., ∆app = #app′ - #app). In detail, if invalid edges are not
removed, DiehardDetector will cause 53 false positives. Moreover,
we notice that over 40% of #app′ for HFS are false positives because
the recognized foreground services will never be launched. Hence,
removing invalid call graph edges is important to DiehardDetector.
Answer to RQ2:DiehardDetector can identify diehard apps with
high precision (100%) and recall (94.7%).

Table 10: Ratio of diehard apps in various app categories.
Category Ratio Category Ratio Category Ratio

Personalization 40.26% Social 25.26% Entertainment 18.26%

Communication 39.44% Video Players 24.91% Photography 18.04%

News&Magazines 31.80% Lifestyle 22.33% Finance 17.31%

Tools 31.47% Health&Fitness 22.17% Education 14.39%

Music&Audio 29.40% Business 21.87% Book&Reference 13.92%

Shopping 27.60% Travel&Local 20.02% Games 10.10%

7.3 RQ3: Prevalence of Diehard Apps.
Methodology: To detect diehard apps in the wild and investigate
the popularity of diehard methods, we apply DiehardDetector to
analyzing the apps in data-80k crawled from Google Play.
Result: The average time for DiehardDetector to analyze an app
is 45 seconds. Table 8 lists the overall result, where Ratio is the
ratio of diehard apps with a specific diehard method. It shows that
17,410 (around 21%) of Google Play apps in our dataset use diehard
methods, and thus diehard apps are prevalent in the app ecosys-
tem. Moreover, MSB, LAS, CSS, HFS, and HTI are the most popular
diehard methods, and roughly 70% of diehard apps implement MSB.
It is interesting that ACP and MAB were not found in data-2k and
data-80k. Thus, we discover 2 new ways for apps to keep their
processes alive and wake themselves up.

Demystifying Diehard Android Apps ASE ’20, September 21–25, 2020, Virtual Event, Australia

Since a diehard app may adopt more than one diehard method,
we also analyze the number of diehardmethods used in each diehard
app, and the results are shown in Table 9. In detail, more than 35%
of diehard apps adopt more than one diehard methods, but very
few diehard apps employ more than four diehard methods.

We also study the distribution of diehard apps in different app cat-
egories, and the results are listed in Table 10. It shows thatmore than
40% of apps in Personalization category use diehard methods. More-
over, the categories including Communication, News & Magazines,
and Tools have more than 30% diehard apps.
Answer to RQ3: Around 21% of Google Play apps in our dataset
adopt diehard methods. The top 5 ones are MSB, LAS, CSS, HFS,
and HTI. ACP and MAB have not been widely used yet. More-
over, diehard methods are widely used by apps in categories like
Personalization, Communication, News & Magazines, and Tools.

8 THREAT TO VALIDITY
The threats to the external validity of DiehardDetector come from
2 aspects. First, some special app samples may negatively affect
the performance of DiehardDetector. More precisely, due to the
intrinsic problem of static analysis, DiehardDetector cannot handle
the apps that adopt advanced obfuscations or packing techniques
to prevent the app’s bytecode from being analyzed. To tackle this
issue, we may use deobfuscators (e.g., TIRO [29]) and unpackers
(e.g., PackerGrind [30, 31]) to recover the protected bytecode. More-
over, some apps may use native code to call the methods (e.g.,
startActivity) relevant to constructing the app’s call graph and
detecting diehard methods. FlowDroid may miss them because it
cannot analyze the native code of the app. To mitigate this prob-
lem, we may employ JN-SAF [28] to get the method invocations
implemented in the app’s native code. Second, although we design
12 diehard methods, we might miss some other diehard methods
adopted by apps in the wild. Nevertheless, this is the most compre-
hensive study of diehard behaviors, and over half of the proposed
diehard methods have never been mentioned by existing studies.

9 DISCUSSION
• Applicability of Diehard Methods: In section §7.1, we evaluate
the applicability of diehard methods using different versions of the
Android systems released by Google. However, to achieve the pur-
pose of prolonging the battery life, mobile vendors will introduce
their own process-killing methods to their customized Android
systems, which may compromise the effectiveness of the presented
diehard methods. In future work, we will further evaluate the ap-
plicability and the effectiveness of the proposed diehard methods
using different mobile vendors’ customized Android systems.
• Intentional Diehard Behaviors: In this paper, we do not distin-
guish the diehard behavior that is intentionally implemented by
the adversary and the one that is carelessly produced by the be-
nign developer. In future work, we intend to differentiate these two
types of diehard behaviors. For instance, if an app relaunches a
dead app process after it checks the aliveness state of this process,
we may consider such procedure implies that the diehard behavior
is intentionally performed. Additionally, if the behavior for keeping
the app process alive does not involve any user interactions, we
may also treat it as an intentionally performed diehard behavior.

10 RELATEDWORK
This section introduces the studies that are most related to find-
ing diehard apps. First, recent studies identify unusual app be-
haviors. Shan et al. [24] propose a static analysis tool to detect
self-hiding behaviors, which prevent the app from being noticed by
users. OverlayChecker [32] runs the app in an emulator to examine
whether an overlay window will be launched by the app at runtime.
DDAX [25] performs static analysis to find the app that abuses the
device administrator, a sensitive functionality provided by Android
system. Shao et al. [26] developed a tool to analyze an app’s lifecy-
cle, which may be used to detect some diehard methods, e.g., HFS,
CSS, MSB, LAS, and UJS. However, it cannot detect other diehard
methods proposed by us. Moreover, we are the first to reveal the
limitations of existing process-killing methods, and exploit them to
design diehard methods. It is worth noting that 7 of 12 proposed
diehard methods were not mentioned in [26].

Second, researchers studied the factors affecting the energy
consumption of Android apps. EnergyPatch [14] and µDroid [19]
pointed out that improper operations on energy-intensive hard-
ware components cause apps to exhibit poor energy consumption.
HOT-PEPPER [15] reveals that the bad implementation practices in
apps have negative impacts on their energy consumption. Oliveira
et al. [21] and Chowdhury et al. [16] found that the programming
languages used to develop apps and the runtime execution logs
affect their energy consumption. GEMMA [20] optimizes the colors
used by apps to reduce the energy consumption on smartphones’
displays. However, none of them mentioned that diehard behaviors
can affect the energy consumption of apps.

11 CONCLUSION
We conduct the first systematic investigation on diehard apps and
diehard methods. By revealing and exploiting the limitations of
existing process-killing methods, we design 12 practical diehard
methods for keeping alive app processes or waking up the stopped
app, which work on popular Android versions from 5.1 - 10.0. To
automatically identify the presence of diehard methods, we develop
DiehardDetector that can accurately and quickly detect our diehard
methods. The extensive experimental results show that DiehardDe-
tector achieves high precision and recall. By applying DiehardDe-
tector to more than 80k apps fetched from Google Play, we observe
that around 21% of apps have adopted diehard methods, suggesting
that diehard apps are prevalent in thewild. To help users understand
the diehard behaviors, app stores may ask developers to describe
such behaviors in their app’s privacy policies[34, 35] and check
whether the apps have disclosed all their diehard behaviors[33].

12 ACKNOWLEDGEMENT
We thank the anonymous reviewers for their helpful comments.
This research is partially supported by the Hong Kong RGC
Projects (No. 152279/16E, 152223/17E, CityU C1008-16G) and the
National Natural Science Foundation of China (No. 61702045, No.
61872438) and Leading Innovative and Entrepreneur Team Intro-
duction Program of Zhejiang (2018R01005) and Zhejiang Key R&D
(2019C03133) and the National Science Foundation under Grant
(No. 1953893, 1953813, and 1951729).

ASE ’20, September 21–25, 2020, Virtual Event, Australia Hao Zhou, Haoyu Wang, Yajin Zhou, Xiapu Luo, Yutian Tang, Lei Xue, and Ting Wang

REFERENCES
[1] 2020. Background Execution Limits. https://developer.android.com/about/

versions/oreo/background.
[2] 2020. Broadcasts Overview. https://developer.android.com/guide/components/

broadcasts.
[3] 2020. Don’t kill my app! https://dontkillmyapp.com/.
[4] 2020. F-Droid. https://f-droid.org.
[5] 2020. Google Play Store. https://play.google.com/store.
[6] 2020. Implicit Broadcast Exceptions. https://developer.android.com/guide/

components/broadcast-exceptions.
[7] 2020. Launch Instant App. https://developers.google.com/android/reference/

com/google/android/gms/instantapps/Launcher.
[8] 2020. Recents Screen. https://developer.android.com/guide/components/

activities/recents.
[9] 2020. Smartphone users still want long-lasting batteries more than shatterproof

screens. https://today.yougov.com/topics/technology/articles-reports/2018/02/
20/smartphone-users-still-want-longer-battery-life.

[10] 2020. Sticky Service. https://developer.android.com/reference/android/app/
Service#START_STICKY.

[11] 2020. Understand Tasks and Back Stack. https://developer.android.com/guide/
components/activities/tasks-and-back-stack.

[12] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. In Proc. PLDI.

[13] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout:
Analyzing the Android Permission Specification. In Proc. CCS.

[14] Abhijeet Banerjee, Lee Kee Chong, Clément Ballabriga, and Abhik Roychoudhury.
2018. EnergyPatch: Repairing Resource Leaks to Improve Energy-Efficiency of
Android Apps. IEEE Transactions on Software Engineering (2018).

[15] Antonin Carette, Mehdi Adel Ait Younes, Geoffrey Hecht, Naouel Moha, and
Romain Rouvoy. 2017. Investigating the energy impact of Android smells. In
Proc. SANER.

[16] Shaiful Chowdhury, Silvia Di Nardo, Abram Hindle, and Zhen Ming Jiang. 2018.
An exploratory study on assessing the energy impact of logging on Android
applications. Empirical Software Engineering (2018).

[17] Yanick Fratantonio, ChenxiongQian, Simon P Chung, andWenke Lee. 2017. Cloak
and Dagger: From Two Permissions to Complete Control of the UI Feedback
Loop. In Proc. S&P.

[18] Mary Jean Harrold and Mary Lou Soffa. 1994. Efficient Computation of Interpro-
cedural Definition-Use Chains. ACM Trans. Program. Lang. Syst. (1994).

[19] Reyhaneh Jabbarvand and SamMalek. 2017. µDroid: An Energy-Aware Mutation
Testing Framework for Android. In Proc. FSE.

[20] Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Gabriele Bavota, Rocco Oliveto,
Massimiliano Di Penta, and Denys Poshyvanyk. 2017. GEMMA: Multi-objective
Optimization of Energy Consumption of GUIs in Android Apps. In Proc. ICSE.

[21] Wellington Oliveira, Renato Oliveira, and Fernando Castor. 2017. A Study on the
Energy Consumption of Android App Development Approaches. In Proc. MSR.

[22] Chuangang Ren, Peng Liu, and Sencun Zhu. 2017. WindowGuard: Systematic
Protection of GUI Security in Android. In Proc. NDSS.

[23] Chuangang Ren, Yulong Zhang, Hui Xue, Tao Wei, and Peng Liu. 2015. Towards
Discovering and Understanding Task Hijacking in Android. In Proc. USENIX
Security.

[24] Zhiyong Shan, Iulian Neamtiu, and Raina Samuel. 2018. Self-hiding Behavior in
Android Apps: Detection and Characterization. In Proc. ICSE.

[25] Zhiyong Shan, Raina Samuel, and Iulian Neamtiu. 2019. Device Administrator
Use and Abuse in Android: Detection and Characterization. In Proc. MobiCom.

[26] Yuru Shao, Ruowen Wang, Xun Chen, Ahemd M. Azab, and Z. Morley Mao.
2019. A Lightweight Framework for Fine-Grained Lifecycle Control of Android
Applications. In Proc. EuroSys.

[27] Yulei Sui, Ding Ye, and Jingling Xue. 2014. Detecting memory leaks statically
with full-sparse value-flow analysis. IEEE Transactions on Software Engineering
(2014).

[28] Fengguo Wei, Xingwei Lin, Xinming Ou, Ting Chen, and Xiaosong Zhang. 2018.
JN-SAF: Precise and Efficient NDK/JNI-Aware Inter-Language Static Analysis
Framework for Security Vetting of Android Applications with Native Code. In
Proc. CCS.

[29] Michelle Y Wong and David Lie. 2018. Tackling runtime-based obfuscation in
Android with TIRO. In Proc. USENIX Security.

[30] Lei Xue, Xiapu Luo, Le Yu, Shuai Wang, and Dinghao Wu. 2017. Adaptive
unpacking of Android apps. In Proc. ICSE.

[31] L. Xue, H. Zhou, X. Luo, L. Yu, D. Wu, Y. Zhou, and X. Ma. 2020. PackerGrind:
An Adaptive Unpacking System for Android Apps. IEEE Transactions on Software
Engineering (2020).

[32] Yuxuan Yan, Zhenhua Li, Qi Alfred Chen, Christo Wilson, Tianyin Xu, Ennan
Zhai, Yong Li, and Yunhao Liu. 2019. Understanding and Detecting Overlay-based
Android Malware at Market Scales. In Proc. MobiSys.

[33] L. Yu, X. Luo, J. Chen, H. Zhou, T. Zhang, H. Chang, and H. Leung. 2019.
PPChecker: Towards Accessing the Trustworthiness of Android Apps’ Privacy
Policies. IEEE Transactions on Software Engineering (2019).

[34] Le Yu, Tao Zhang, Xiapu Luo, and Lei Xue. 2015. AutoPPG: Towards Automatic
Generation of Privacy Policy for Android Applicationss. In Proc. SPSM.

[35] L. Yu, T. Zhang, X. Luo, L. Xue, and H. Chang. 2017. Towards Automatically
Generating Privacy Policy for Android Apps. IEEE Transactions on Information
Forensics and Security (2017).

[36] Yajin Zhou and Xuxian Jiang. 2012. Dissecting Android Malware: Characteriza-
tion and Evolution. In Proc. S&P.

https://developer.android.com/about/versions/oreo/background
https://developer.android.com/about/versions/oreo/background
https://developer.android.com/guide/components/broadcasts
https://developer.android.com/guide/components/broadcasts
https://dontkillmyapp.com/
https://f-droid.org
https://play.google.com/store
https://developer.android.com/guide/components/broadcast-exceptions
https://developer.android.com/guide/components/broadcast-exceptions
https://developers.google.com/android/reference/com/google/android/gms/instantapps/Launcher
https://developers.google.com/android/reference/com/google/android/gms/instantapps/Launcher
https://developer.android.com/guide/components/activities/recents
https://developer.android.com/guide/components/activities/recents
https://today.yougov.com/topics/technology/articles-reports/2018/02/20/smartphone-users-still-want-longer-battery-life
https://today.yougov.com/topics/technology/articles-reports/2018/02/20/smartphone-users-still-want-longer-battery-life
https://developer.android.com/reference/android/app/Service#START_STICKY
https://developer.android.com/reference/android/app/Service#START_STICKY
https://developer.android.com/guide/components/activities/tasks-and-back-stack
https://developer.android.com/guide/components/activities/tasks-and-back-stack

	Abstract
	1 Introduction
	2 Background
	3 Methods for Killing App Processes
	3.1 Finding Process-killing Methods
	3.2 App Process Priority
	3.3 Exploring Process-Killing Methods

	4 Keeping Apps Alive
	4.1 Manipulating Recent-Task Item
	4.2 Escalating App Process Priority

	5 Waking Up Apps
	5.1 Utilizing App Component
	5.2 Leveraging System Functionality
	5.3 Relying on Third-party Apps

	6 Detecting Diehard Apps
	6.1 Overview
	6.2 Parsing Manifest File
	6.3 Analyzing Bytecode
	6.4 Detecting Diehard Methods

	7 Evaluation
	7.1 RQ1: Applicability of Diehard Methods.
	7.2 RQ2: Performance of DiehardDetector.
	7.3 RQ3: Prevalence of Diehard Apps.

	8 Threat To Validity
	9 Discussion
	10 Related Work
	11 Conclusion
	12 Acknowledgement
	References

