
Towards Privacy-Preserving Malware Detection
Systems for Android

Helei Cui∗†, Yajin Zhou‡, Cong Wang∗†, Qi Li§, and Kui Ren‡
∗Department of Computer Science, City University of Hong Kong, Hong Kong, China
†City University of Hong Kong Shenzhen Research Institute, Shenzhen, China

‡College of Computer Science and Technology, Zhejiang University, Hangzhou, China
§Graduate School at Shenzhen, Tsinghua University, Shenzhen, China

cuihelei@outlook.com, {yajin zhou, kuiren}@zju.edu.cn, congwang@cityu.edu.hk, qi.li@sz.tsinghua.edu.cn

Abstract—Android is the primary target for mobile malware.
To protect users, phone vendors (e.g., Samsung and Huawei)
usually leverage third-party security service providers (e.g.,
VirusTotal and Qihoo 360) to detect malicious apps in app
stores and collect apps’ runtime behaviors on users’ phones to
further spot malware missed in the previous step. However, this
practice could cause privacy concerns to phone vendors, users
and security service providers. Specifically, phone vendors do not
want to share apps (including the paid ones) with security service
providers, while the latter do not want to share the malware
signatures with the former. Moreover, users do not want to expose
apps’ runtime behaviors to third parties. These concerns would
cause a real dilemma for each involved party. In this paper,
we propose a privacy-preserving malware detection system for
Android, in which the privacy (or assets) of phone vendors, users,
and security service providers are protected. It detects malicious
apps in phone vendor’s app stores and on users’ phones,
without directly sharing apps, apps’ runtime behaviors, and
malware signatures to other parties. We implement a prototype
system called PPMDroid and apply several optimizations to save
bandwidth and speed up the process. Extensive evaluation results
with real malware samples demonstrate the effectiveness and
efficiency of our system.

Index Terms—Android, privacy preserving, malware detection.

I. INTRODUCTION

Android is the world’s most popular mobile platform. It
remains relatively stable at 85% of the worldwide smartphone
volume in 2018 [1]. Such success comes from the existence of
the application (abbr. app) ecosystem. For instance, the Google
Play is the most popular app store available on a large number
of Android devices. Besides that, other phone vendors are also
keen to establish their own app stores, e.g., Samsung Galaxy
Apps and Huawei App Store, mainly for marketing purpose or
due to the fact that the Google Play is not available in some
regions or countries.

The popularity of Android also has attracted the attention of
malware developers. They try to cheat users to download and
install malicious apps. What’s worse, once published to those
app stores, a malware would infect a large number of users in
a short period of time. For instance, the recent report showed
that more than 50 apps on Google Play were found infected
with the Judy malware in May 2017, with nearly 36 million
downloads [2]. After infecting users, the malware could “steal

users’ private information, turn the devices into a remotely
controlled botnet, or even cause financial loss to users” [3].

In light of these threats, different approaches have been
proposed by both industry and academia. These approaches
roughly fall into two categories. The first category consists of
app source code analysis systems [4]–[6] based on pre-defined
signatures or file similarity to statically detect malware. For
instance, the DroidRanger [4] detects malware based on the
static behavior footprints. While static malware detection is
efficient, it is hard to deal with obfuscated malware samples.
This motivates the second category on dynamic detection
systems [7]–[9], which are deployed in different contexts but
the essence is the same. They monitor and track apps’ be-
haviors running in controlled environments, usually emulators
or devices with customized ROMs. One of the representative
systems is the Bouncer service [7] introduced by Google. It
automatically runs the newly submitted apps, observes their
behaviors in a short time period, and removes the malicious
ones from the app store.

Despite efforts being made, developing an effective malware
detection system to protect users is still challenging for most of
the phone vendors, due to the quickly evolving capabilities of
malware to evade detection and the lack of expertise in the area
of malware detection. Because of this, phone vendors usually
cooperate with third-party security service providers [10]. It is
known that the accuracy of the static detection system relies
on the completeness of signatures or features of malware fam-
ilies. And the effectiveness of the dynamic detection system
highly depends on the known malicious runtime behaviors.
It has been demonstrated that existing systems could be by-
passed [11] due to the incompleteness of monitored behaviors.
For instance, previous report showed that the Google Bouncer
is leveraging virtual phones (emulators) to run the app and
monitor its behaviors. However, due to the limited running
time of each app and the differences in behaviors between the
virtual phones and real devices, malware could evade analysis
via the sandbox (or emulator) detection technique [12]. Thus,
this motivates us to leverage apps’ running behaviors on real
users’ phones to improve the detection capability [8].

However, such practice could cause privacy concerns to
phone vendors, security service providers, and users, and each
of them faces a real dilemma. For security service providers to

vet the apps in phone vendors’ app stores, these apps (includ-
ing the paid ones1) have to be shared with them. This violates
the interest of phone vendors and developers because these
apps (especially the paid ones), including underlying code and
resource files, would be exposed completely2, which is actu-
ally relinquishing vendors’ control over the app’s ecosystem.
An alternative way for the security service providers is to share
the malware signatures, so as to perform the scanning on the
side of phone vendors. This protects the apps but leaks the
signatures of malware families, which are the most valuable
asset of security service providers. From the users’ perspective,
collecting apps’ runtime behaviors on their devices could leak
sensitive information and compromise their privacy.

In this paper, we propose a privacy-preserving Android
malware detection system. It supports the operations that
are needed in existing static and dynamic malware detection
systems, while at the same time satisfies the privacy needs of
the three involved parties. First, for the static detection, our
proposed method leverages a set of features extracted from
apps to be scanned rather than the apps themselves to detect
the malicious ones. The extracted features are hashed via a
cryptographic hash function (e.g., SHA256) and then shared
with third-party service providers. Since only features (in hash
values) are provided and the vetting process is performed on
the side of security service providers, it does not reveal both
the code of apps (that is unfeasibly recovered from the shared
hash values) and the signatures of malware families (that are
always kept private). Second, for the dynamic detection, our
method collects apps’ runtime behaviors on users’ real phones,
and search inside a local signature database (in encrypted
form) of malware families from security service providers.
During this process, apps’ runtime behaviors are not leaked to
other parties, and the encrypted malware signature database is
never decrypted and thus protected.

It’s worth noting that the detection methods of our system
are mainly proposed by prior studies [4], [6] and they are
not our contributions. However, we adopt them in a privacy-
preserving way. To the best of our knowledge, our work is the
first privacy-preserving Android malware detection system. In
summary, this paper makes the following contributions:
• We analyze the current practice of Android malware

detection that involves different parties and shed light on the
privacy concerns.
• We propose a privacy-preserving Android malware detec-

tion system. It supports detection methods of existing malware
detection systems, while at the same time improves the overall
privacy of all involved parties.
• We implement a prototype called PPMDroid. The evalu-

ation with real malware samples and formal security analysis
demonstrate its accuracy, effectiveness, and security strength.

1The fact that the paid apps could be malware may contradict someone’s
intuition, but it actually happened [13].

2One may argue that apps may be eventually exposed since security service
providers can use crawlers to download the apps. However, this crawling
behavior just demonstrates the value of these apps, otherwise they will not
invest resources to actively retrieve these apps. Moreover, the app stores
usually deploy anti-crawling technique to prevent this behavior.

II. BACKGROUND

A. Android Apps and Malware

The security boundary of the Android system is the UID
(user ID) based sandbox, in which the apps cannot interact
with other ones or perform sensitive operations by default. To
access resources, apps have to request the necessary permis-
sions in the app manifest file called AndroidManifest.xml.

The malware also needs to request corresponding permis-
sions to execute malicious payloads, e.g., sending SMS to
a premium-rate number. In practice, we can leverage the
SEND_SMS permission to narrow down apps with this permis-
sion and then use particular strings to detect the particular mal-
ware samples. Note that to evade detection, malware authors
could obfuscate strings in this app. In this case, more features,
e.g., API call sequences and dynamic runtime behaviors, can
be used to improve the detection accuracy.

B. Preliminary

Oblivious Pseudorandom Function (OPRF) An OPRF
protocol [14] enables two parties, say A holding an input x
and B holding a secret key K, to jointly and securely compute
a pseudorandom function (PRF) F (K,x) (i.e., {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗). This two-party computation protocol is
operated obliviously in the sense that A only learns the output
value, while B learns nothing from the interaction. Here, we
use a simple OPRF instantiation: F (K,x) = (H1(x))K , where
H1 is a hash function onto G \ {1} (G is a group of prime
order p), and K is randomly selected in Z∗p. In particular, A
picks a random r in Z∗p and sends a = (H1(x))r to B. Then B
sends back b = aK . Lastly, A can obtain (H1(x))K via b1/r.

III. PROBLEM STATEMENT

A. Overview

Fig. 1 illustrates the flow of Android malware detection
before (Fig. 1-(a)) and after (Fig. 1-(b)) adopting our proposed
schema. In Fig. 1-(a), to detect malicious apps in phone
vendors’ app stores, apps have to be shared with the security
service providers (abbr. SP) since they have more complete
malware signatures (¬). Then the static detection results are
reported to phone vendors (), and those malicious apps
are removed accordingly. To further detect stealthy malware
families that may be missed in the previous step, apps’ runtime
behaviors on users’ phones could be collected and analyzed
dynamically (®). The result is sent to phone for taking proper
actions (¯). However, sharing apps (for static detection) and
their runtime behaviors (for dynamic detection) with third-
parties violates phone vendors’ interest and users’ privacy.

We present a privacy-preserving way for Android malware
detection shown in Fig. 1-(b) to protect apps, malware signa-
ture database, and users’ privacy. First, to protect the apps’
code from being leaked during the static detection procedure,
features (in hash values) instead of apps are allowed to be
shared with SPs (¬). Note that the features, even being
hashed, could still leak some information such as permissions,
invoked functions, and API call sequences. But using these

Security Service Provider (SP)

③ Runtime behaviors

User
④ Warnings

Phone Vendor

(a) Without privacy-preserving schema.

Security Service Provider (SP)

User
③ Encrypted signature DB

⑤ Detection

Phone Vendor

(b) With privacy-preserving schema.

Fig. 1. The flow of malware detection before and after adopting our proposed privacy-preserving schema.

limited features cannot directly reverse-engineer the code of
the queried app, because the one-way property ensures that it is
infeasible to generate those benign yet unique algorithms and
resource files from hash values. Later, based on the returned
results (), malicious apps will be removed from the app
stores as previous. Second, to protect the malware signatures of
SPs in our dynamic detection scheme, the signature database is
encrypted with private keys only known by themselves (®). In
the meanwhile, to protect users’ privacy, the captured runtime
behaviors will not be sent to the other parties in the cleartext.
Users obtain authorized tokens from the SP through an OPRF
protocol (¯) and the dynamic detection is carried on locally,
by comparing the tokens derived from the behaviors with the
encrypted signature database (°).

B. Threat Model and Assumptions

Consistent with prior work in Android malware detection,
our design goal is to detect malicious apps inside app stores
and on users’ phones. Phone vendors have the incentive to
do this to protect their users, e.g., for the better marketing
purpose. They usually cooperate with SPs and leverage their
malware signatures for better detection. However, phone ven-
dors should not be able to recover the well-collected malware
signatures (because these are the most valuable asset of SPs.)
From another perspective, vendors are not willing to directly
share the apps with SPs.

Moreover, in the scenario of detecting malware on users’
phones, SPs faithfully build the encrypted malware signature
database for identifying malicious behaviors and help users to
generate valid tokens. But they should not be aware of the
runtime behaviors. In addition, we consider that an adversary,
pretending to be a valid user, should not be able to decrypt
the encrypted signature database.

IV. STATIC MALWARE DETECTION

A. Design Rationale

To detect and remove malware in app stores, phone vendors
could cooperate with SPs and leverage their malware signa-
tures. However, a dilemma is that vendors do not want to share
the apps and SPs do not want to share the malware signatures.

In this section, we will demonstrate that two commonly
used static detection techniques could be used in a privacy-
preserving way. The first detection technique is inspired by

DroidRanger [4]. In brief, we leverage the requested per-
missions and the extracted behavioral footprints, which are
semantic-rich information of each app, to detect malware.
Second, we compare the similarity of apps to be scanned
with existing malware samples. If we find a similar pair of
an app and a malware sample, then it’s most likely the app is
also malicious. In particular, we use the technique proposed
in FSquaDRA [6] to calculate the file similarity of two apps.

Our design goal is to allow the SPs perform malware
detection without holding the apps. Thus, the above-mentioned
features, including the permissions, behavioral footprints, and
file hashes are necessarily minimal leakage about the apps.
The SPs cannot (easily) recover the original value thanks to the
one-way property of the selected cryptographic hash functions.
Even a SP may guess the original values using the brute-force
attack, the cost of the process and the value of the recovered
features do not deserve this attempt. Remember the code of
the app is not shared and cannot be recovered at all. The entire
process flow is illustrated in Fig. 2.

B. Permission Filter

Android apps have to request permissions during installation
(before Android 6.0) or at runtime (since Android 6.0) to
better control access to system-wide resources. Depending on
the malicious payloads of the malware family, the malicious
app has the corresponding essential permissions. For instance,
in order to send SMS to the premium-rate number in the
background, the malicious app has to request the SEND_SMS
permission. And to launch the Exploid root exploit, the
CHANGE_WIFI_STATE is needed. As pointed by many prior
studies (e.g., [3], [4]), these essential permissions succinctly
summarize the wrongdoings of an app and thus can be used
to filter out unnecessary malware families to be checked.
Discussion Our permission filter is used for quickly narrow-
ing down a small number of malware family candidates. Thus,
the permission information of the queried apps are shared with
the SP. This does not appear to be harmful because even a user
could be aware of such information when installing (or using)
an app. We are aware that our system can be augmented by
existing advanced primitives (e.g., private set intersection [15])
to achieve the functionality with better privacy protection.
However, such integration inevitably incurs extra overhead that
would degrade the overall system efficiency.

Phone
Vendor

Feature
Extractor

Security Service Provider (SP)

Permission
Filter

Behavioral Footprint
Detector

File Similarity
Detector Analyzer

result

features

Fig. 2. An overview of our static detection approach: A phone vendor extracts
features of apps in its app store and shares these features with the SP. The
SP uses the permissions to quickly filter out unrelated malware families and
then leverages two detectors, i.e., the behavior footprint detector and the file
similarity detector, to detect whether the app is malicious. After that, the
detection results are returned back to the phone vendor.

C. Behavioral Footprint Detector

We then perform a deeper detection based on an app’s
behaviors. Followed by [4], we use behavioral footprints to
denote multiple dimensions of malware behaviors. In the cur-
rent prototype, we use the following categories of behavioral
footprints, which can be extended if needed.
• Constant strings: Constant strings in apps can represent

some kinds of apps’ behaviors. One such example is the
destination number of SMS message of the FakePlayer
malware family.

• Component names, package names and method sig-
natures: These types of information represents the
code syntax of an app, and can also be used to
detect malware. For instance, the malicious compo-
nent name of the DroidKungFu1 malware family is
“com.google.ssearch” [3].

• API call sequences: API calls can represent the semantics
of an app. The app could receive an SMS message
through the broadcast receiver and then discard it using
the abort() API call. This type of semantic information
can also be used to detect malware.

During the detection, the phone vendor extracts the above
behavioral footprints of apps and sends the corresponding hash
values to the SP. To check if the app matches a malware family
MFi = {bf1, · · · , bfn}, the SP uses the signatures (i.e., the
hash value of bfi) to perform string matching with the hash
values of the app’ footprints AFq = {bf1, · · · , bfm}. Different
from [4], we involve a weight for each type of behavior in
the malware family. Particularly, each behavior footprint in a
malware family is now associated with a weight value, i.e.,
MFi = {(bf1, δ1), · · · , (bfn, δn)}. If a footprint bfi in MFi
also belongs to AFq (i.e., bfi ∈MFi∩AFq), then we will add
its weight δi to a score. Eventually, if the score is larger than
a pre-defined threshold, then we consider the app is malicious.
Improvement via Bloom Filter Here, we can apply the
Bloom filter [16], a space-efficient probabilistic data struc-
ture for high-speed set membership tests, to further reduce
the bandwidth cost of exchanging the hash values of apps’
behavioral footprints. Specifically, the phone vendor builds the
Bloom filter BF (i.e., a m-bit array representing a Set of at
most n items) at local and sends it (rather than the exact hash
values of those behavioral footprints) to the SP for checking
the behavior footprints and calculating the final score.

By doing so, our system gains two extra benefits. First, from
the perspective of bandwidth efficiency, the size of the encoded
Bloom filter is far less than the original behavioral footprints
(or even the hash values). Second, from the perspective of
data privacy, the encoded Bloom filter can reduce, to some
extent, the information leakage. Because the SP can easily
test whether a known item is included, but can hardly recover
the exactly encoded items due to the huge behavior space.

D. File Similarity Detector

We now illustrate the way of using file similarity to detect
malware. The intuition is that the malware authors could use
automatic tools to produce a batch of malware samples, each
with minor changes. If we find an app is very similar to a
malware sample, then the app is most likely a malicious one.

There are multiple ways to detect the file similarity of
two apps. In our prototype, we use the method proposed by
the FSquaDRA system [6]. This system compares the file
similarity based on the Jaccard similarity of file hash values. In
particular, the Jaccard similarity coefficient to evaluate the sim-
ilarity score is as follows: jScore(FH1, FH2) = |FH1∩FH2|

|FH1∪FH2| ,
where FH1 and FH2 are the sets of file hashes of a queried
app and a malware sample. If the score exceeds a similarity
threshold, then the app is probably malicious as the sample.
As this pair-wise similarity measure could become costly
when facing a large dataset, we will further explore other
optimizations to speed up this procedure, e.g., adopting the
Locality-Sensitive Hashing (LSH) techniques [17].

V. DYNAMIC MALWARE DETECTION

In this section, we elaborate our secure dynamic malware
detection design, operated between users’ phones and SPs.

A. Design Rationale

Unlike the static detection that has known malware samples
as templates, our dynamic approach relies on apps’ runtime
behaviors on users’ phones to detect stealthy malware that may
be missed in the previous step of static detection.

To achieve this, one option is to collect and send apps’
runtime behaviors to a SP. Then the SP compares the col-
lected behaviors with the behaviors (or signatures) of malware
families. However, this violates users’ privacy since the apps’
behavior may reveal users’ private information. Another option
is to deploy the malware signatures on the phone, and the
comparison is carried on locally. This protects users’ privacy,
but puts the malware signature database at risk, since this
database could be obtained by every user (including the
competitors of the SPs).

To address this dilemma, we resort to the searchable sym-
metric encryption (SSE) technique [18], which allows a party
to store data (e.g., the malware signature database) at another
party in a private manner and later supports keyword search
while maintaining privacy. However, directly using SSE does
not solve the problem that users want to obtain query tokens
from the SP while hiding their runtime behaviors. To this end,
we add a crucial ingredient to our design, i.e., using OPRF [14]

Algorithm 1 Build Encrypted Signature Database
Input: The private keys of SP: K = (K1,K2); the malicious

behavior set: W = {(w1, id1), · · · , (wn, idn)}, where wi is a
behavior (string) and idi is its malware family ID.

Output: Encrypted signature database D.
1: Initialize a hash table D;
2: for i← 1 to n do
3: si ← H1(wi), where H1 : {0, 1}∗ → G;
4: t1 ← (si)

K1 = F (K1, wi);
5: t2 ← (si)

K2 = F (K2, wi);
6: D.put(t1, Enc(t2, idi));
7: end for

to jointly compute the valid query tokens without revealing the
private keys of the SP and the queried behaviors of the user’s
phone. Then, the detection can be performed on the user’s
phone, by comparing the authorized tokens derived from the
behaviors with the encrypted signature database, and the result
will be kept locally.

B. Setup by the SP

First of all, a SP should build an encrypted malware signa-
ture database to compare with the app’s runtime behaviors,
without leaking the signatures. We apply one of the latest
SSE constructions [18], which is implemented by using a
generic hash table. There are multiple runtime behaviors that
could be leveraged for malware detection, e.g., the behav-
ior to send SMS in the background to some premium-rate
numbers [3], executing special system calls [19], sensitive
functions executed or access malicious command-and-control
(C&C) servers [4], [9]. These behaviors could be expressed in
the format of strings. For instance, the behavior of mounting
system partition as read-write using the sys mount system
call could be denoted as “syscall:sys_mount”. In the
current prototype, we leverage the URLs (in strings) accessed
by the app at runtime to detect whether it is malicious.
Other behaviors could be supported similarly. In particular, the
malware signature database contains a pair of encrypted key
(malicious URLs) and value (the malware family ID). After
finding a match inside the database, the ID will be obtained,
and the corresponding warning information is showed to users.

Algorithm 1 illustrates the detailed construction of the
encrypted signature database. We use w to denote the runtime
behaviors in general (e.g., malicious URLs in our prototype)
and id to denote the malware family ID. The objective is
to transform the behavior set (expressed in strings) W =
{(w1, id1), · · · , (wn, idn)} to a set of encrypted key-value
pairs so that they can be stored in a hash table. For each
behavior wi, the SP first computes the signature si via the
hash function H1 : {0, 1}∗ → G. Then a token pair (t1, t2) are
generated from si: t1 ← (si)

K1 and t2 ← (si)
K2 , where K1

and K2 are private keys used for PRF F (k, x) = (H1(x))k.
Next, the key-value pair (t1, Enc(t2, idi)) will be inserted
into a hash table D, where Enc is symmetric encryption
algorithm and idi is the corresponding malware family ID.
Accordingly, the actual description of malware family is stored
separately on the user’s phone and can be read by its ID (idi).

Masked queryQuery signature

Random
maskr

Masked
tokens

Private keys

Security Service
Provider (SP)User’s phone

Encrypted
signatures

Result

Fig. 3. An illustration of the query flow.

Also, the description information could be retrieved from the
SP’s remote server after finding a match. After this step, the
encrypted malware signature database D will be distributed to
the users’ phones for later dynamic detection.

C. Detection on the User’s Phone

From a high-level point of view, the detection process is
checking the collected runtime behaviors on users’ phones
with the entries in an encrypted signature database. How-
ever, for privacy protection, the collected runtime information
should never be leaked to other parties, including the phone
vendor and the SP. To this end, users’ devices generate tokens
via an OPRF protocol with the help of the SP and then tokens
are searched over the encrypted signature database at the local
device. Once a match is found, users will be notified of the
corresponding malware family information for further action,
or the app will be automatically removed. We follow the
similar practice adopted by the Google Play Protect [20].

Fig. 3 shows the query flow, and Algorithm 2 illustrates the
detailed operations. For each obtained app’s behavior wq , the
user first computes the signature sq via the same hash function
H1. Then it computes the masked signature x via (sq)

r, where
r is a random value used for hiding the user’s query from the
SP. Upon receiving x, the SP generates the masked token pair
(y1, y2) with its private keys K1 and K2: y1 ← (x)K1 and
y2 ← (x)K2 , and returns them back to the user. Next, the
user obtains the authorized token pair (t1, t2) by unmasking
(y1, y2) with the random value r. At last, if t1 matches a key
in the D, then the corresponding malware family ID idq would
be decrypted via Dec(t2,D.get(t1)). Otherwise, the queried
behavior wq does not refer to a known malware family.

Remark In above design, the user’s phone needs to interact
with the SP to obtain the token. This operation may cause a
delay of the main functionality of the app. To mitigate this, we
could run the detection process in another thread that would
not block the main execution of the app.

VI. SECURITY ANALYSIS

In this section, we provide formal security analysis to rigor-
ously justify the security strength of our system design. First,
in the static malware detection, phone vendor is not required
to send the apps to the SP. The only thing necessary for our
proposed detection methods is a set of features rather than the
apps. Since only features are provided and the vetting process
is performed on the side of SPs, it does not reveal both the
code of apps and the signatures of malware families. We are

Algorithm 2 Detect Over Encrypted Signature Database
Input: The private keys of SP: K = (K1,K2); the encrypted

signature database: D; and a queried runtime behavior: wq , which
is collected on the user’s phone.

Output: Malware family ID idq or ⊥.
User’s phone: // mask the query signature

1: sq ← H1(wq), where H1 : {0, 1}∗ → G;
2: Pick a random r

$←− Z∗
p;

3: x← (sq)
r;

4: Send x to the SP via a secure channel;
SP: // generate the query tokens with its private keys

5: y1 ← (x)K1 ; y2 ← (x)K2 ;
6: Send back (y1, y2);

User’s phone: // unmask the query tokens and detect
7: t1 ← (y1)

1/r = (sq)
r·K1·1/r = (sq)

K1 ;
8: t2 ← (y2)

1/r = (sq)
r·K2·1/r = (sq)

K2 ;
9: if D.get(t1) == null then

10: Return ⊥, i.e., wq is not a malicious behavior;
11: else
12: Return a malware family ID idq ← Dec(t2,D.get(t1));
13: end if

aware that these features, even being hashed, could still leak
some information about an app, such as permissions, invoked
functions, and API call sequences. Nevertheless, knowing this
information cannot directly reverse-engineer the code of the
queried app, because the one-way property ensures that it
is infeasible to generate those benign yet unique algorithms
and resource files from hash values. Thus, apps of the phone
vendor are always protected in our proposed design.

Second, in our dynamic detection scheme, the user’s runtime
behaviors are never leaked to other parties and the final results
are never left the user’s phone. We follow the security notion
of SSE [18], and our dynamic detection scheme achieves se-
curity against adaptive chosen-keyword attacks (CKA2) under
quantifiable leakage profiles. That is, three leakage functions
are defined for the view of the encrypted signature database,
the query pattern, and the access pattern, where the query
pattern indicates the equality of queried signatures and the
access pattern includes the results of queries:
• Since the encrypted signature database D is kept on the

user’s phone, the phone knows its capacity and size, which
are captured in the leakage function L1, defined as follows:
L1(D) = (n, (|u|, |v|)), where n is the number of entries in
D, |u| and |v| are the bit lengths of encrypted key-value pairs.
• During the detection procedure, the phone sees the re-

peated tokens, accessed key-value pairs, and matched malware
family IDs ids, which are captured in the query pattern L2,
defined as follows: L2({wi}1≤i≤q) = (Nq×q), where Nq×q
is a symmetric binary matrix such that for 1 ≤ i, j ≤ q, the
element in the i-th row and j-th column is set to 1 if wi = wj ,
and 0 otherwise.
• Moreover, the phone also sees the detection results if

there are matches for the query tokens {wi}1≤i≤q , which
are captured in the access pattern, defined as follows:
L3({wi}1≤i≤q) = ({(u, v)i, idi}1≤i≤q), where (u, v)i is ac-
cessed key-value pair and idi is its malware family ID.

Within a polynomial number of adaptive queries, the phone
only learns the information defined in leakage functions, no
other information about the content of the encrypted signature
database. Now, we follow the security framework of [18] and
give the simulation-based security definition:

Definition 1. Given our dynamic detection scheme Π with
stateful leakage functions (L1, L2, L3), and a probabilistic
polynomial time (PPT) adversary A and a PPT simula-
tor S, we define the probabilistic games RealΠ,A(λ) and
IdealΠ,A,S(λ) as follows:
RealΠ,A(λ) : a challenger C generates private keys

K = {K1,K2}. Then A selects a behavior set W =
{(w1, id1), · · · , (wn, idn)} and asks C to build the encrypted
signature database D via Algorithm 1. Then A adaptively
conducts a polynomial number of secure queries with the
tokens t = {(t1, t2), · · · } generated from C. Finally, A returns
a bit “1” as the game’s output if the detection results are all
correct and consistent; otherwise, “0”.
IdealΠ,A,S(λ) : A selects W , and S generates D̃ based

on L1. Then A adaptively conducts a polynomial number of
queries. From L2 and L3 of each query, S generates the
corresponding t̃, which are processed over D̃. Finally, A
returns a bit “1” as the game’s output if the simulated results
are all correct and consistent; otherwise, “0”.

Our proposed scheme Π is (L1,L2,L3)-secure against
adaptive chosen-keyword attacks (CKA2) if for all PPT
adversaries A, there exists a PPT simulator S such that
Pr[RealΠ,A(λ) = 1] − Pr[IdealΠ,A,S(λ) = 1] ≤ negl(λ),
where negl(λ) is a negligible function in λ.

Theorem 1. Our dynamic detection scheme Π is (L1,L2,L3)-
secure against adaptive chosen-keyword attacks in the random
oracle model if (Enc,Dec) is semantically secure, and F is
secure PRF.

Proof. Based on L1, the simulator S can build a randomized
database D̃ with the same size as the real encrypted signature
database D, containing n key-value pairs. Each simulated key-
value pair (ũ, ṽ) are random strings with the same lengths as
the real one (u, v). Due to the semantic security of symmetric
encryption and the pseudorandomness of secure PRF, D̃ is
computationally indistinguishable from D.

When the first query w1 is sent, S randomly generates two
strings as the simulated tokens (t̃1, t̃2). After that, a random
oracle O1 is operated in the way of ũ = O1(t̃1) to select
(ũ, ṽ). Then the other random oracle O2 is operated to get
the result (i.e., malware family ID) id = O2(t̃2||ṽ). Note
that id is exactly the same as the real result indicated in L3.
And the due to the pseudorandomness of secure PRF, (t̃1, t̃2)
are also computationally indistinguishable from (t1, t2). In the
subsequent queries, the repeated tokens are recorded by L2, so
S can directly use the previously simulated ones. Otherwise, S
generates tokens via O1 and O2 in the same way as mentioned
above. And the results derived from D̃ are also identical to the
real results. Therefore, A cannot differentiate the simulated
tokens and results from the real tokens and results.

TABLE I
THE RESULTS OF OPTIMIZATION VIA BLOOM FILTER.

Method
Avg. Bandwidth

(KB)
Avg. Detect
Time (ms)

Avg. Reconstruct
Time (ms)

Baseline 38.89 0.23 1.06
Bloom filter 1.33 0.14 1.82

VII. EXPERIMENTAL EVALUATION

A. Experimental Setup

The static detection functionalities at the SP and the search-
ing inside the encrypted malware signature database on the
Android device are implemented in Java. Particularly, the
static detection is conducted on a Microsoft Azure instance
“Standard D8s v3” with 8 vCPU @ 2.3 GHz and 32 GiB
of RAM in Linux (Ubuntu Server 16.04 LTS). And the
client evaluation is performed on a Huawei Mate 9 Android
phone. Regarding the cryptographic primitives, we use Java
Cryptography Architecture (JCA) to realize the cryptographic
hash function via SHA256, and JPBC library3 with type
“d159” setting to generate group elements and involved hash
functions. In addition, we import the Bloom filter4 for perfor-
mance optimization. In our experiment, we use the malware
samples released by the Android Malware Genome Project [3].
It has 49 malware families with 1,260 samples in total.

B. Evaluation

Accuracy Comparison with Original Malware Detection
Recall that we leverage existing malware detection methods
and apply them in a privacy-persevering way. To evaluate the
effectiveness of our system, we need to answer the following
question: whether our system can achieve the same accuracy
as the original malware detection designs?

To this end, for static malware detection, we apply the same
permission filter and feature sets for 49 malware families.
It turns out that our system can detect all the samples that
were detected by the original system. For the detection based
on file similarity, we use 1,260 samples as our sampled
dataset, and randomly select 1 to 1,000 apps as our query
set. We want to compare the results of similarity comparison
of the FSquaDRA system and our system. Note that we set
the similarity threshold to 0.85. We then calculate the recall
ration, i.e., the fraction of the relevant items that can be
successfully retrieved (true positives

true positives+false negatives). Here the
true positives means the samples can be detected by both
systems, and the false negatives means the samples can be
detected by FSquaDRA but missed by ours. In our evaluation,
the recall ration achieves 100%, which means our system has
the same detection accuracy as FSquaDRA.

Effectiveness of Optimization via Bloom Filter In our
prototype, we leverage Bloom filter to optimize the bandwidth
consumption when sharing feature sets between phone vendors
and SPs (see Section IV-C).

3JPBC Library: http://gas.dia.unisa.it/projects/jpbc/index.html
4Bloom Filter in Java: https://github.com/MagnusS/Java-BloomFilter

0.5 1 1.5 2

Number of Signatures ×10
5

0

200

400

600

800

1000

1200

P
re

p
ar

at
io

n
 T

im
e

(s
)

thread = 1

thread = 2

thread = 4

thread = 8

Fig. 4. Evaluation of encrypted signature database preparation.

TABLE II
TIME COST OF OPERATIONS IN DYNAMIC DETECTION.

User’s phone (ms) SP (ms)

Mask Unmask Query+Dec Gen Token

36.2 69.1 1.67 5.87

Table I shows the comparison results. The baseline method
is to send the hashes of extracted behavioral footprints directly,
where each hash value in our experiment is 32 bytes in
SHA256. On average, the size of extracted footprint hashes
of each app is about 38.89 KB, which is almost 30 times
larger than the size of encoded Bloom filter. Specifically,
we set the false positive rate ε to 0.001, create a Bloom
filter for each queried app with the optimal parameters (i.e.,
the size m = d− n·ln ε

(ln 2)2 e and the number of hash functions
k = d− ln ε

ln 2e [16] are determined based on the actual number
of hash values), and then serialize the encoded filter into a
binary file. Before performing the detection at the SP, it needs
a little more time to reconstruct (i.e., deserialization) the filter.
Nevertheless, the average detection speed is still very fast, say
less than 1 ms for each malware family. Note that applying
Bloom filter keeps the same accuracy as the original one.

Efficiency of Dynamic Detection In our prototype of the
dynamic malware detection, the SP needs to prepare the en-
crypted signature database D periodically. Fig. 4 demonstrates
the setup time of preparing 50,000 to 200,000 signatures (i.e.,
malicious URLs with malware family IDs). When preparing
these encrypted key-value pairs, we use multiple threads with
the thread number from 1 to 8. This number could be increased
to further accelerate this process. We note that this is a one-
time cost for each batch of signatures, and is inevitable for
the purpose of security.

In our test, the size of the encrypted malicious signature
database with 100, 000 entries (derived from URLs) is around
1.9 MB, which is acceptable to be stored on users’ phones.

Besides that, we also test the major cryptographic operations
required during the detection on a real Android phone, as
shown in Table II. We see that the mask and unmask are
quite efficient, but still relatively slower than the query and
decryption due to the underlying exponentiation operations.
Note that the server (SP) can perform the token generation

very fast, about 6 ms for each signature. In addition, for the
bandwidth cost in the OPRF protocol, each queried signature
only requires three group elements in G, i.e., x and (y1, y2),
where each element is 40 byte in our setting. As a result, the
OPRF protocol does not introduce much overhead in terms of
both computation resources and bandwidth consumption.

VIII. RELATED WORK

Android Malware Detection In the literature, many static
Android malware detection systems have been proposed over
the past years. For example, DroidRanger [4] uses permis-
sions to filter out unrelated apps and then leverages behavior
footprint to detect new samples of known malware families.
FSquaDRA [6] and DroidEagle [21] leverage file similarity
to detect malware. Our proposed privacy-preserving schema
can be applied to these systems. For instance, our prototype
uses the detection methods proposed by the DroidRanger and
FSquaDRA, but in a privacy-preserving way. From another
perspective, dynamic malware detection systems leverage sys-
tem call sequences [19], runtime information [8], accessed
URLs [9], etc. However, these systems do not consider the
privacy concerns in sharing runtime behaviors. Our system
takes similar methods but protects users’ privacy.

Searchable Encryption We propose to use searchable en-
cryption (SE) techniques to achieve privacy-preserving dy-
namic malware detection on users’ phones. In principle, most
SE schemes surveyed in [22] are applicable to build encrypted
yet queryable signature database as used in our system. These
SE schemes (just to name a few) focus on improving locality
and throughput [18], supporting boolean queries [14] and sim-
ilarity queries [17], as well as some specific usage scenarios,
like image denoising [23]. To the best of our knowledge, we
are the first that apply SE to the mobile malware detection
scenario. Considering the mobile context, we customize the
efficient scheme proposed by Cash et al. [18], and further
incorporate an OPRF protocol to enable users to perform
secure detection on their local devices, without revealing the
private inputs to other parties, i.e., the private keys of the SP
and the queried signatures of the users.

IX. CONCLUSION

In this paper, we presented a design towards privacy-
preserving Android malware detection systems. We first shed
light on the privacy concerns of existing static and dynamic
malware detection systems, involving phone vendors, security
service providers, and users. Then we proposed a privacy-
preserving schema to improve the overall privacy of all
involved parties and implemented a prototype system called
PPMDroid. Moreover, we provided rigorous security analysis
to justify the security strength of the proposed system, and
the evaluation with real malware samples demonstrated its
effectiveness and efficiency. As a future direction, we will
explore how to efficiently support other stateful information
like API call graph.

ACKNOWLEDGMENT

This work was supported in part by the Research Grants
Council of Hong Kong under Grant CityU 11276816, Grant
CityU 11212717, and Grant CityU C1008-16G, in part by the
Innovation and Technology Commission of Hong Kong under
ITF Project ITS/168/17, in part by the National Natural Sci-
ence Foundation of China under Grant 61572412, 61572278,
and 61772236, and in part by a Microsoft Azure Grant.

REFERENCES

[1] IDC, “Worldwide smartphone volumes will remain down in 2018 before
returning to growth in 2019 and beyond, according to idc,” https://www.
idc.com/getdoc.jsp?containerId=prUS43856818, 2018.

[2] C. McGoogan, “Millions of android devices infected with malware in
popular judy game,” http://www.telegraph.co.uk/technology/2017/05/31/
millions-android-devices-infected-malware-popular-judy-game/, 2017.

[3] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Proc. of IEEE S&P, 2012.

[4] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of
my market: detecting malicious apps in official and alternative android
markets.” in Proc. of NDSS, 2012.

[5] E. Mariconti, L. Onwuzurike, P. Andriotis, E. D. Cristofaro, G. Ross,
and G. Stringhini, “Mamadroid: Detecting android malware by building
markov chains of behavioral models,” in Proc. of NDSS, 2017.

[6] Y. Zhauniarovich, O. Gadyatskaya, B. Crispo, F. La Spina, and E. Moser,
“Fsquadra: fast detection of repackaged applications,” in Proc. of DBSec,
2014.

[7] http://googlemobile.blogspot.hk/2012/02/android-and-security.html,
2017.

[8] M. Sun, M. Zheng, J. C. Lui, and X. Jiang, “Design and implementation
of an android host-based intrusion prevention system,” in Proc. of
ACSAC, 2014.

[9] C. Zuo and Z. Lin, “SMARTGEN: Exposing Server URLs of Mobile
Apps With Selective Symbolic Execution,” in Proc. of WWW, 2017.

[10] “Huawei’s emui 5.0 ups the ante on mobile security,”
http://www.marketwired.com/press-release/huaweis-emui-50-ups-
the-ante-on-mobile-security-2175259.htm, 2017.

[11] “Researchers find methods for bypassing googles bouncer android
security,” https://threatpost.com/researchers-find-methods-bypassing-
googles-bouncer-android-security-060412/76643/, 2017.

[12] T. Vidas and N. Christin, “Evading android runtime analysis via sandbox
detection,” in Proc. of ACM ASIACCS, 2014.

[13] “Top-five paid app on google play was an antivirus scam,”
https://www.cnet.com/news/top-five-paid-app-on-google-play-was-
an-antivirus-scam/, 2017.

[14] S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner, “Outsourced
symmetric private information retrieval,” in Proc. of ACM CCS, 2013.

[15] C. Dong, L. Chen, and Z. Wen, “When private set intersection meets big
data: an efficient and scalable protocol,” in Proc. of ACM CCS, 2013.

[16] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[17] X. Yuan, H. Cui, X. Wang, and C. Wang, “Enabling privacy-assured
similarity retrieval over millions of encrypted records,” in Proc. of
ESORICS, 2015.

[18] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu,
and M. Steiner, “Dynamic searchable encryption in very-large databases:
Data structures and implementation.” in Proc. of NDSS, 2014.

[19] I. Gasparis, Z. Qian, C. Song, and S. V. Krishnamurthy, “Detecting
Android Root Exploits by Learning from Root Providers,” in Proc. of
USENIX Security, 2017.

[20] “Help protect against harmful apps with google play protect,” https:
//support.google.com/accounts/answer/2812853?hl=en, 2017.

[21] M. Sun, M. Li, and J. C. Lui, “Droideagle: Seamless detection of visually
similar android apps,” in Proc. of ACM WiSec, 2015.

[22] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A survey of provably se-
cure searchable encryption,” ACM Computing Surveys (CSUR), vol. 47,
no. 2, p. 18, 2015.

[23] Y. Zheng, H. Cui, C. Wang, and J. Zhou, “Privacy-preserving image
denoising from external cloud databases,” IEEE TIFS, vol. 12, no. 6,
pp. 1285–1298, 2017.

