
An Empirical Study on ARM Disassembly Tools
Muhui Jiang

csmjiang@comp.polyu.edu.hk
The Hong Kong Polytechnic

University
China

Yajin Zhou∗
yajin_zhou@zju.edu.cn
Zhejiang University

China

Xiapu Luo
csxluo@comp.polyu.edu.hk
The Hong Kong Polytechnic

University
China

Ruoyu Wang
fishw@asu.edu

Arizona State University
USA

Yang Liu
yangliu@ntu.edu.sg

Nanyang Technological University
Singapore

Institute of Computing Innovation,
Zhejiang University

China

Kui Ren
kuiren@zju.edu.cn
Zhejiang University

China

ABSTRACT
With the increasing popularity of embedded devices, ARM is becom-
ing the dominant architecture for them. In the meanwhile, there is
a pressing need to perform security assessments for these devices.
Due to different types of peripherals, it is challenging to dynami-
cally run the firmware of these devices in an emulated environment.
Therefore, the static analysis is still commonly used. Existing work
usually leverages off-the-shelf tools to disassemble stripped ARM
binaries and (implicitly) assume that reliable disassembling binaries
and function recognition are solved problems. However, whether
this assumption really holds is unknown.

In this paper, we conduct the first comprehensive study on
ARM disassembly tools. Specifically, we build 1, 896 ARM bina-
ries (including 248 obfuscated ones) with different compilers, com-
piling options, and obfuscation methods. We then evaluate them
using eight state-of-the-art ARM disassembly tools (including both
commercial and noncommercial ones) on their capabilities to lo-
cate instructions and function boundaries. These two are funda-
mental ones, which are leveraged to build other primitives. Our
work reveals some observations that have not been systemati-
cally summarized and/or confirmed. For instance, we find that
the existence of both ARM and Thumb instruction sets, and the
reuse of the BL instruction for both function calls and branches
bring serious challenges to disassembly tools. Our evaluation sheds
light on the limitations of state-of-the-art disassembly tools and
points out potential directions for improvement. To engage the
community, we release the data set, and the related scripts at
https://github.com/valour01/arm_disasssembler_study.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’20, July 18–22, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8008-9/20/07. . . $15.00
https://doi.org/10.1145/3395363.3397377

CCS CONCEPTS
• Software and its engineering→ Assembly languages.

KEYWORDS
Disassembly Tools, ARM Architecture, Empirical Study

ACM Reference Format:
Muhui Jiang, Yajin Zhou, Xiapu Luo, Ruoyu Wang, Yang Liu, and Kui Ren.
2020. An Empirical Study on ARM Disassembly Tools. In Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA ’20), July 18–22, 2020, Virtual Event, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3395363.3397377

1 INTRODUCTION
ARM is becoming the dominant architecture for embedded and
mobile devices. At the same time, the security of these devices has
attracted raising attentions [26, 32, 34, 41, 57, 59], possibly due to se-
rious consequences if they are compromised. For instance, a botnet
with hijacked IoT devices could bring down popular websites [26]
and disrupt power grids [59].

The software of these devices, i.e., the firmware, is usually closed-
source. Researchers have to analyze the (stripped) firmware without
access to the source code or debugging symbols. Due to different
types of peripherals of these devices, it is an ongoing research prob-
lem to dynamically run firmware under an emulated environment
at a large scale [33, 34, 39, 65]. Because of this (sad) fact, static
analysis is still a dominating methodology used by the commu-
nity [32, 35, 40, 57, 63]. For instance, it has been used to locate
bugs [40], find authentication bypass vulnerabilities [57] and build
a general framework to rewrite ARM binaries 1 [60].

As shown in Table 1, previous systems usually leverage off-
the-shelf disassembly tools to identify instructions and function
boundaries. They assume that reliably disassembling stripped bina-
ries is a solved problem. However, whether this assumption really
holds is unknown. Andriesse et al. [25] performed an analysis of
disassembly tools on x86/x64 binaries and presented their findings
that “some constructs, such as function boundaries, are much harder

1In this paper, we use “ARM binaries” to refer to binary programs running on CPUs of
the ARM architecture. An ARM binary can have both ARM and Thumb instruction
sets (Section 2.1) [32].

401

https://doi.org/10.1145/3395363.3397377
https://doi.org/10.1145/3395363.3397377

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Muhui Jiang, Yajin Zhou, Xiapu Luo, Ruoyu Wang, Yang Liu, and Kui Ren

Table 1: A summary of representative research prototypes
and their supported primitives and used disassembly tools.

System Instruction
Boundary

Function
Boundary

Control Flow
Graph

Call
Graph

Disassembly
Tools

Firmalice[57] ✓ ✓ ✓ ✓ angr
Firmup[35] ✓ ✓ ✓ IDA Pro
Genius[40] ✓ ✓ ✓ IDA Pro
Gemini [63] ✓ ✓ ✓ IDA Pro
RevARM [60] ✓ ✓ ✓ IDA Pro
Bug Search[51] ✓ ✓ IDA Pro
discovRE[38] ✓ ✓ ✓ ✓ IDA Pro
C-FLAT[24] ✓ ✓ Capstone

to recover accurately than is reflected in the literature.” Although
the paper provides insights of the mismatch between assumptions
in papers and current capabilities of popular disassembly tools, it
only focuses on x86/x64 binaries. Whether their findings could be
applied to ARM binaries is unknown.
Challenges of disassemblingARMbinariesARM binaries have
some unique properties, which bring challenges when disassem-
bling them. First, inline data is common in ARM binaries while
“constructs like inline data and overlapping code are very rare” in
x86/x64 binaries [25]. Second, ARM provides two instruction sets:
the ARM instruction set and the Thumb instruction set (which
includes both 16-bit Thumb-1 and 32-bit Thumb-2 instructions).
An ARM binary can have both ARM and Thumb instructions. Pre-
cisely identifying the correct instruction set is challenging. Third,
there is no distinguished function call instruction in ARM binaries,
unlike the call instruction on x86/x64. Compilers tend to reuse
other instructions, such as the branch and link instruction (BL), for
both function calls and direct branches in the Thumb instruction
set. This makes identifying functions more challenging. Due to
these unique properties, there is a need to perform an extensive
and thorough evaluation of ARM disassembly tools.
Our work In this work, we perform an empirical study of ARM
disassembly tools. In particular, we evaluate these tools’ capabili-
ties of two primitives, the instruction boundary and the function
boundary. These two are fundamental ones that other primitives
(e.g., control flow graph and call graph) are built upon. To make the
study comprehensive, it should meet the following requirements:
(1) Our evaluation should use diverse programs, including both

popular benchmarks and, more importantly, different types of
real programs that are commonly used in the wild.

(2) Our evaluation should cover different compilers with various
compiling options, e.g., different instruction sets and optimiza-
tion levels.

(3) Our evaluation should consider options of tools, which may
affect the result.

(4) Our evaluation should include obfuscated binaries [67], since
they do exist in the wild and could affect the results of disas-
sembly tools.
To this end, we cross-compile 1, 040 real-world programs and

19 benchmark programs. In total, we get 1, 896 binaries, where
608 are from the SPEC CPU2006 with different compiling options.
Among the remaining ones, 1, 040 are Android daemons, libraries,
and user-space binaries of embedded systems (e.g., OpenWRT [19]).
We also build 248 obfuscated binaries using O-LLVM [43] with

multiple obfuscation methods. Then we obtain the ground truth
with the help of debugging symbols and feed the stripped bina-
ries (binaries without debugging symbols) to eight state-of-the-
art ARM disassembly tools, including three commercial ones (i.e.,
IDA Pro [13], Hopper [12], and Binary Ninja [5]) and five noncom-
mercial ones (i.e., Ghidra [11], arm-linux-gnueabi-objdump [18],
angr [58], Radare2 [22], and BAP [30]). Finally, we measure the pre-
cision and recall by comparing the differences between the ground
truth and the disassembling result.

Based on the result, we present some observations that were
not systematically summarized and/or confirmed. First, the unique
properties of ARM binaries do bring challenges to the disassembly
tools, especially the two different instruction sets (i.e., the ARM
instruction set and the Thumb instruction set) and the reuse of the
BL label for both function call and branch. Second, disassembly
tools do not have a good support to binaries in Thumb instruction
set. The precision and recall for disassembling Thumb instructions
are usually lower than that of ARM instructions (more than 90%
in maximum). Third, the robustness and scalability of disassembly
tools should be improved. We observed several exceptions, segment
faults and timeout during the analysis. Fourth, other factors, includ-
ing compilers, compiling options, target CPU architectures, could
affect the result. However, the root cause is still due to the unique
properties of ARM binaries.

We have reported our findings along with failed test cases to
developers of the evaluated tools [14–17]. Developers of Binary
Ninja, Hopper, and angr verified our findings and provided updates
based on the failed cases. Radare2 assigned bug tag to them. Ghidra
verified our findings and provided the potential solutions, while
BAP declared that they would solve the problem in the future. To
engage the community, we release the data set, and the related
scripts at https://github.com/valour01/arm_disasssembler_study.

In summary, this work makes the following contributions.
• We summarize the unique properties of ARM binaries that bring
challenges to the disassembling of ARM binaries.
•Weperform the first comprehensive study of state-of-the-art disas-
sembly tools on ARM binaries and report our findings, which show
that, contrary to the previous assumption, reliably disassembling
ARM binaries is not yet a solved problem.
•Our evaluation and further analysis of failed cases reveal their root
causes and provide insights and future directions for improvements.

2 BACKGROUND
2.1 CPU Architectures and Instruction Sets
ARM has multiple CPU architectures, each with different instruc-
tion extensions and features. When building binaries, developers
can specify the target CPU architecture, e.g., ARMv5 or ARMv7,
through compiling options (-march). For instance, ARMv5 is the
default CPU architecture of the GCC compiler.

Moreover, there are two instruction sets, i.e., the ARM instruc-
tion set and the Thumb instruction set. The former is 32-bit long,
while the latter is 16-bit long and designed for size-sensitive appli-
cations, which is available for ARMv4T CPU architecture and later
versions. Since ARMv6T2, Thumb-2 is introduced. It offers “best
of both worlds” compromise between the ARM instruction set and
the Thumb instruction set. It has access to both 16-bit and 32-bit

402

https://github.com/valour01/arm_disasssembler_study

An Empirical Study on ARM Disassembly Tools ISSTA ’20, July 18–22, 2020, Virtual Event, USA

C

uint8 foo(uint8 x, uint8 a,
uint16 b, uint16 c)

{
if (a==2) x += (b >> 8);
else x += (c >> 8);
return x;

}

ARM

0x00: e3510002 CMP r1,#2
0x04: 10800423 ADDNE r0,r0,r3,LSR #8
0x08: 00800422 ADDEQ r0,r0,r2,LSR #8
0x0c: e20000ff AND r0,r0,#0xff
0x10: e12fff1e BX lr

Thumb

0x00: 2902 CMP r1,#2
0x02: d101 BNE {pc}+0x6 ; 0x8
0x04: 0a11 LSRS r1,r2,#8
0x06: e000 B {pc}+0x4 ; 0xa
0x08: 0a19 LSRS r1,r3,#8
0x0a: 1808 ADDS r0,r1,r0
0x0c: 0600 LSLS r0,r0,#24
0x0e: 0e00 LSRS r0,r0,#24
0x10: 4770 BX lr

Thumb-2

0x00: 2902 CMP r1,#2
0x02: bf14 ITE NE
0x04: eb002013 ADDNE r0,r0,r3,LSR #8
0x08: eb002012 ADDEQ r0,r0,r2,LSR #8
0x0c: b2c0 UXTB r0,r0
0x0e: 4770 BX lr

Figure 1: The source code and its corresponding ARM,
Thumb and Thumb-2 instructions.

instructions. In this paper, we use the Thumb instruction set to
denote both Thumb and Thumb-2 instruction encoding.

A single binary can contain multiple instruction sets and switch
between them, e.g., switching betweenARM instructions and Thumb
(Thumb-2) instructions. The switching can occur explicitly by exe-
cuting branch instructions or implicitly specified by branch targets.
For instance, the BLX label instruction always changes the instruc-
tion set from ARM to Thumb or vice versa. However, the BX Rm
derives the target instruction set from bit[0] of the register Rm. If it
is 0, then the target instruction set is ARM. Otherwise, it is Thumb.
The target instruction set of other branch instructions, e.g., POP
{PC, Rm ...}, also depends on the last bit of the target address.
This brings serious challenges for disassembly tools to statically
determine the target instruction set, especially for the ones that
leverage linear sweep strategy (Section 2.2).

Figure 1 illustrates the source code of a function and the binary
compiled using ARM, Thumb and Thumb-2 instructions. Note that,
for the two popular compilers (e.g., GCC and Clang), the default
instruction set is ARM, and the option -mthumb is used to change
it to Thumb. The instruction set greatly affects the accuracy of
disassembly tool, which we will discuss in Section 4.

2.2 Disassembly Strategies
To understand the capability of disassembly tools, we use two prim-
itives, i.e., the instruction boundary and the function boundary in
our study. To precisely detect the instruction boundary, a disassem-
bly tool should be able to locate the inline data inside the binary
and the correct instruction set (ARM vs Thumb).

There are two different disassembly strategies [52, 55]. One is
linear sweep, which linearly decodes the code sections. It is used by
disassemblers such as the GNU utility Objdump. However, the inline
data (data inside the code section), and instruction set switching
cannot be detected by this strategy since it does not consider the
control flow transfers. Figure 2 shows a function with three basic
blocks and inline data between the basic block 2 and the basic block
3. The Objdump tool fails to determine the boundary between code
and data, and disassembles the inline data as code.

Another strategy is recursive traversal. Its basic idea is disassem-
bling code from the entry point of a binary, and then recording the
branch targets as new entry points (usually appends these branch
targets into a list). It repeats this process until no new targets could
be found, and all the targets in the list have been traversed. The
advantage of this strategy is that it is unlikely to disassemble inline

Ground Truth

BB 1

BB 2

Inline Data

BB 3

BB 1

BB 2

Inline Data

BB 3

BB 1

BB 2

Inline Data

BB 3

Linear Sweep Recursive Traversal

?

Figure 2: Two disassembly strategies. The function has three
basic blocks (BBs), and inline data between BB2 and BB3.
There is a direct jump fromBB1 to BB2 and an indirect jump
from BB2 to BB3.

data as code, since there should be a control flow transfer instruc-
tion before the inline data (otherwise, the data will be executed as
code at runtime). Moreover, it can handle instruction set switch
if the branch target can be determined statically (direct branches).
However, the disadvantage is that some code regions may bemissed,
if they cannot be reached through direct branches. As in Figure 2,
the code in the basic block 3 may be missed since this block can
only be reached through an indirect branch, whose target is deter-
mined at runtime. Note that, even though methods [31] have been
proposed to detect the targets of a jump table (one type of indirect
branches), how to reliably detect other types of indirect branches
(e.g., function pointers) is still an open research question. We do
find that resolving indirect jump targets can improve the result of
disassembly tools (Section 4.4.2).

2.3 Function Identification
Function identification is an important primitive, which can be used
to construct other primitives, e.g., function call graph. Previous
work usually leverages function signatures to detect functions. The
method proposed in [27, 30] scans a binary for known function
prologues and epilogues. However, this method is limited by the
fact that function signatures (e.g., prologues and epilogues) could
be missing. Moreover, it’s a tedious task to maintain a up-to-date
signature database.

Due to these limitations, a compiler-agnostic function identi-
fication method was proposed in Nucleus [36]. The basic idea is
to analyze the inter-procedural control flow graph (ICFG). To use
Nucleus, the binary should have distinguished function call in-
structions, e.g., the call instruction for x86. Unfortunately, this
assumption does not hold for the binary compiled using the Thumb
instruction set. Specifically, the BL label instruction is intended for
a direct function call. However, Thumb binaries reuse it for a direct
branch (besides the function call) since the range of the branch
target is larger than the B label instruction. As a result, it causes
many false positives to the function detection. We observed a sig-
nificant decrease of the precision value for the function boundary
of binaries with the Thumb instruction set (Figure 8(b)).

2.4 Code Obfuscation
Some binaries are obfuscated. For instance, O-LLVM [43] is usually
used to obfuscate programs. It supports the following obfusca-
tion methods. Specifically, instructions substitution (sub) is used to
replace standard operators with more complicated instruction se-
quences. The bogus control flow (bcf) changes a function’s control

403

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Muhui Jiang, Yajin Zhou, Xiapu Luo, Ruoyu Wang, Yang Liu, and Kui Ren

Figure 3: Overview of our study

flow graph by adding basic blocks. The control flow flattening (fla)
uses the control flow flatten algorithm [47] to create a large number
of fake control flows. In this study, we use O-LLVM to generate the
obfuscated binaries and feed them to disassembly tools to evaluate
the impact of code obfuscation.

3 APPROACH
As shown in Figure 3, we first compile various types of programs,
including popular benchmarks and real-world applications (①),
using different compilers (GCC and Clang) with diverse compiling
options (②). This aims to cover popular compilers and different
scenarios that binaries are built with different options. After that,
we first generate the ground truth by leveraging the debugging
symbols (③), and then remove the symbols (④) and feed the stripped
binaries to disassembly tools (⑤). We retrieve the result of identified
instructions and functions for each tool, and compare the result with
the ground truth (⑥) to generate the final report, which contains
the recall and precision value. We present the main steps of our
study in the following sections.

3.1 Build Programs
One may think it is straightforward to compile binaries for eval-
uation. However, to make our study representative, we need to
consider the types of programs and the diversity of compilers, com-
piling options, and obfuscation methods, which will affect the result.
Different Types of ProgramsWe use three types of programs in
our study. They include the widely used SPEC CPU2006, binaries
in AOSP and OpenWRT. The latter two represent the binaries for
mobile systems and IoT devices. Specifically, we compile the SPEC
CPU2006 using both Clang and GCC compilers with two optimiza-
tion levels (Os and O2), two instruction sets (ARM and Thumb) and
two CPU target architectures (-march with ARMv5 and ARMv7). In
total, we get 608 binaries, i.e., 19 benchmark programs × 2 instruc-
tion set × 2 optimization levels × 2 compilers × (3 compiler versions
+ 1 specific CPU architecture with latest version of compilers) =
608 binaries.

Considering the popularity of IoT and mobile systems, we build
the latest Android Open Source Project (AOSP version 9) and extract
daemon binaries (127 in total) and libraries (667 in total). Also, we
build the latest stable version of OpenWRT (version 18.06). There
are 12 different target boards that support the ARM architecture.
In total, we get 246 binaries.
Compilers We use two compilers, i.e., GCC and Clang, each with
three different versions. Specifically, we use GCC versions 6.5, 7.5

and 8.3 and Clang versions 7.0, 8.0 and 9.0, which cover the major
compilers used in the wild.
Compiling Options As mentioned in Section 2.1, different com-
piling options (e.g., with or without -mthumb) would result in com-
pletely different binaries. Considering the diversity of binaries, we
aim to understand which compiling options are mostly used in
the real world. Thus, we divide ARM binaries into three types,
according to systems they are used.
(1) Type-I: Embedded OSes They are used in resource-constrained

ARM devices, mainly the ARM Cortex-M processor families
with low computational power.We select FreeRTOS v10.1.1 [23],
the most popular real time operating system, and Mbed OS
(version 5) [3], the open-source embedded operating system
designed for IoT. There are several projects in FreeRTOS, each
supports a different development board (or device). We cross-
compile all the projects that support the ARM architecture. For
the Mbed OS, we compile all the targets that support the ARM
architecture.

(2) Type-II: Linux Kernel Linux kernel has been used on ARM de-
vices widely. Such devices include mobile devices and ARM
servers. For mobile devices, we use the most popular oper-
ating system Android, and build the kernel (version 4.4.169)
for Android 9.0 (code name: Pie). We also build the kernel for
Debian (version 9.6.0), one of the most popular Linux distri-
butions for desktop computers and servers. We download and
cross-compile the kernel (version 4.9.144) from Debian’s official
repository.

(3) Type-III: User-level Programs We also use user-level programs,
including daemons, libraries used on mobile devices, desktop
computers and servers. Specifically, we build user-level pro-
grams from Buildroot [6], Android Open Source Project (AOSP,
version 9.0.8) [1], and the popular Debian packages. They are
representative programs for low-end embedded systems, mo-
bile devices, and ARM desktop/servers. In particular, Buildroot
is commonly used in low-end embedded systems, including
routers, IP cameras and etc. We compile all binaries targeting
ARM development boards. For Debian packages, we use the top
five mostly installed packages, i.e., libpam-modules, libattr1,
libpam0g, zlib1g, and ebianutils, ranked by the Debian pop-
ularity contest [9].
Table 2 shows the result of compiling options for Type-I, Type-

II and Type-III binaries. We find that the Thumb instruction set
is mostly used in Type-I binaries, and O2 and Os are commonly
used optimization levels. Due to this observation, we compile the
benchmark programs for the evaluation to both ARM and Thumb
instruction sets with O2 and Os optimization levels to reflect real
situations of ARM binaries in the wild.
Obfuscation To evaluate the impact of obfuscation, we use the
O-LLVM [43], an open-source obfuscator, to compile the SPEC
CPU2006. O-LLVM supports three different obfuscation methods,
i.e., instruction substitution(sub), bogus control flow graph (bcf)
and control flow flattening (fla). We apply each obfuscation method
to each program, and then combine three methods together. Since
the bogus control flow graph (bcf) consumes too much time (more
than 2 hours) when applying it to C++ programs, we do not apply
this method to C++ programs.

404

An Empirical Study on ARM Disassembly Tools ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Table 2: The compiling options for Type-I, Type-II and Type-III binaries. The third column shows the number of total object
files (.o files), and the last two columns show the number of object files with the Thumb instruction set and optimization levels.

Name # of Objects Boards/Targets Thumb Optimization Levels

Type-I Mbed 39, 183 61 39, 183 {’Os’: 39, 183}
FreeRTOS 87 9 22 {’Os’: 24, ’O2’: 32}

Type-II Linux Kernel (Android) 1, 361 1 0 {’Os’: 1, ’O2’: 1, 291, ’O0’: 1}
Linux Kernel (Debian) 1, 860 1 0 {’O3’: 1, ’O2’: 1, 788, ’O0’: 1, ’Os’: 1}

Type-III
AOSP 3, 384 1 2, 875 {’Os’: 2, 787, ’O2’: 299, ’O0’: 27,’O3’: 69}
Buildroot 188, 387 103 1, 677 {’Os’: 188, 387}
Debian Packages 339 5 0 {’O2’: 305, ’O3’: 34}

Summary: In total, we get 1, 896 binaries including 248 obfuscated
ones. We believe this dataset is representative to demonstrate the
diversity of compilers, compiling options, target architectures and
types of devices.

3.2 Determine Disassembly Primitives
In this work, we consider the instruction and function boundary as
fundamental primitives (Table 1). Other ones (e.g., direct control
flow graph) could be built upon them.

Instruction Boundary The instruction boundary refers to the
start offset of an instruction, as well as the correct instruction set
(ARM or Thumb). The purpose is two-fold. First, it is used to distin-
guish between code and inline data. Inline data is commonly used in
ARM binaries, e.g., for the PC-relative addressing. This is different
from x86 binaries, which do not contain inline data [25] except for
the jump tables of binaries compiled by Visual Studio. Second, it
is used to distinguish between ARM and Thumb instruction sets.
This is challenging since the instruction set is partially determined
by the target address of an (indirect) branch instruction, which is
hard to be obtained by static analysis.

Function Boundary The function boundary refers to the start
offset of a function. Function boundary recognition is a necessary
primitive to construct the call graph, which is critical to the whole
program analysis.

Interestingly, tools that could precisely recover instruction and
function boundary do not scale. For instance, certain tools cannot
finish the analysis within two CPU hours for some binaries. That
means these tools are not scalable to large and complex binaries.
Table 3 shows the number of binaries (the Timeout column) that
cannot be analyzed within two CPU hours.

3.3 Generate Ground Truth
After determining the primitives, we need to get the ground truth.
However, even with debugging symbols, it is not straightforward
to directly get the result. we describe our approaches as follows.

Instruction BoundaryWe use mapping symbols [2] in the bina-
ries to get the information of the instruction boundaries. Mapping
symbols are generated by compilers to identify inline transitions
between code and data, as well as ARM and Thumb instruction sets.
There are three types of mapping symbols, including:

• $a: Start of a region of code containing ARM instructions.
• $t: Start of a region of code containing Thumb instructions.
• $d: Start of a region of data.

For instance, the mapping symbol “0001043c $t” denotes that
the offset 0x0001043c in the binary is code (not inline data), with
the Thumb instruction set.

However, mapping symbols only include the start address of the
code and data regions without indicating the offset and the instruc-
tion set of each instruction in the region. To deal with this issue, we
use Capstone [7] to retrieve the offset of each instruction. It works
well since we have the instruction set (ARM/Thumb) information
of each code region to help Capstone disassemble the code region.

Note that, the mapping symbol is an architecture-specific exten-
sion of the ARM ELF file. It may not exist in other architectures. By
leveraging it, our system can detect the instruction boundary with
a sound and complete result. Previous work can only detect 98% of
the ground truth and requires a manual verification [25].

Function BoundaryWe leverage DWARF [37], a debugging file
format to retrieve the function boundary. DWARF uses the data
structure named Debugging Information Entry (DIE) to describe
each variable, type, and function, etc. Each DIE has a tag (i.e.,
DW_TAG_subprogram) for function and each function has a key (i.e.,
DW_AT_low_pc) to represent the function start address.

We extract the DW_TAG_subprogram and DW_TAG_subprogram from
the DWARF of each binary to get the ground truth.

3.4 Extract the Result
We evaluate eight state-of-the-art ARM disassembly tools, including
five noncommercial ones, i.e., angr [58], BAP [30], Objdump [18],
Ghidra [11], Radare2 [22], and three commercial ones, i.e., Binary
Ninja [5], Hopper [12] and IDA Pro [13]. Each tool has different
ways to extract the instruction and function boundary. We carefully
read the manual of each tool and write a script to extract the result.

4 EVALUATION
As discussed in Section 3, we build 1, 896 binaries (including 248
obfuscated ones) to evaluate eight disassembly tools.We address the
following research questions in Section 4.2, Section 4.3, Section 4.4
and Section 4.5 respectively.

• RQ1: What is the accuracy of disassembly tools towards the
whole data set?

• RQ2: What are the factors that affect the results of disassembly
tools, and what are the reasons?

• RQ3: Do different types and options of tools have different re-
sults?

• RQ4: How efficient are these disassembly tools?

405

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Muhui Jiang, Yajin Zhou, Xiapu Luo, Ruoyu Wang, Yang Liu, and Kui Ren

Table 3: The result of whole data set. Invalid means the tool cannot identify any instructions or functions. Timeout means
the tool cannot finish the analysis in two hours (CPU time). Exception means the tool raises exceptions during the analysis.
Segfault means the tool triggers a segment fault during the analysis.

Tool Type Tool Instruction Boundary Function Boundary # of Timeout # of Exception # of SegfaultPrecision Recall F1 Score # of Invalid Precision Recall F1 Score # of Invalid

Noncommercial

angr 0.886 0.797 0.830 1 0.404 0.667 0.490 1 16 364 262
BAP 0.565 0.277 0.309 11 0.533 0.358 0.387 11 214 0 0

Objdump 0.702 0.750 0.722 0 - - - - 0 0 0
Ghidra 0.954 0.828 0.873 0 0.855 0.714 0.766 0 13 0 0
Radare2 0.749 0.837 0.788 0 0.906 0.432 0.521 0 7 22 0

Commercial
Binary Ninja 0.984 0.857 0.900 0 0.806 0.800 0.781 0 37 0 0

Hopper 0.971 0.986 0.978 0 0.825 0.816 0.807 0 2 0 0
IDA Pro 0.994 0.970 0.978 5 0.944 0.781 0.838 5 1 0 0

4.1 Evaluation Metrics
Weuse precision and recall tomeasure the accuracy (or effectiveness)
of a tool. The definition of these two metrics is in equation 1.

precision =
tp

tp + f p
recall =

tp

tp + f n
(1)

In the equation, we use tp, fp, fn to denote true positives, false
positives and false negatives. Recall measures the ratio of true posi-
tives to the ground truth. A disassembler with high false negatives
may have low recall. Precision measures the ratio of true positives
to the result of a tool. A disassembler with high false positives may
have low precision.

Considering the importance of both recall and precision, we also
compute the F1 score according to equation 2. F1 score can reflect
the overall accuracy of a tool.

F1 score =
2 × recall × precision

recall + precision
(2)

4.2 Overall Results (RQ1)
Table 3 shows the overall result. The recall, precision and F1 score
are computed in the granularity of macro-averaging. A tool may
not be able to detect any instruction or function for a given binary;
We mark such cases with the flag Invalid. We also set a threshold
(two CPU hours in our study) for each tool to analyze a binary. This
is because if a tool cannot finish the analysis in two hours, then it
is not scaled to analyze a large number of binaries. We count the
number of binaries that cannot be analyzed in two CPU hours with
the flag Timeout. We also count the number of binaries that trigger
an exception or a segment fault for each tool. We mark them with
the flag Exception and Segfault, respectively.

Note that, a tool may have different options when performing
the analysis. For instance, angr provides an option to disable or
enable the resolution of indirect jumps. We use the default option
for each tool to calculate the overall result and leave the evaluation
of the impact of different options in Section 4.4.2.
Instruction Boundary IDA Pro has the highest precision value,
while Hopper owns the highest recall value. Both of them have the
highest F1 scores and are commercial tools. Moreover, these two
are robust, since they do not raise any exceptions or generate any
segment faults during the analysis. Among all the tools, BAP does
not perform very well on both the instruction boundary and the
function boundary. This is due to the insufficient support of the
Thumb instruction set. Besides, BAP does not disassemble instruc-
tions that are out of the range of recognized functions. That means

if a function cannot be detected, then all instructions inside that
function will be ignored. This is the reason why the recall of the
instruction boundary is rather low. For other tools, the reason for
the lower precision and recall mainly comes from two different
reasons. One is the challenges raised by mixed ARM and Thumb
instruction sets, and the other is the inline data.
Function Boundary IDA Pro still has the highest precision while
Hopper has the highest recall. In terms of F1 score, IDA Pro has the
highest value. It means that the function boundary is correlated
with the instruction boundary. BAP mainly uses signatures learnt
from a set of binaries to detect the function boundary. Due to the
imprecise function signatures, functions with no representative
signatures cannot be detected by BAP. As for Radare2, the recall is
relatively low compared with other tools. That is because Radare2
has a very strict policy on detecting functions. Users can use the
command aaaa to explore more functions by searching for the
function patterns.
Robustness and ScalabilityWe find some noncommercial tools
are not robust. For instance, more than 600 binaries triggered either
an exception or a segment fault of angr. For the 262 binaries that
triggered a segment fault, 160 of them are binaries compiled from
the SPEC CPU2006, and 87.5% (140/160) of them are compiled using
the Thumb instruction set. Based on this observation, there is a great
space for angr to improve the support of the Thumb instruction set.
This observation also applies to other tools, e.g., Radare2.

BAP does not scale well because 214 binaries cannot be analyzed
in two hours, which is far more than other tools. We also observed
timeouts when evaluating other tools except Objdump. For example,
37 binaries cannot be analyzed by Binary Ninja in two hours.
Failed Cases Disassembly tools failed to identify the right instruc-
tion boundary or function boundary due to different kinds of rea-
sons.Wemanually study the failed cases and find that tools utilizing
function signatures to identify the function boundary can make
mistakes due to insufficient function signatures. Apart from this,
disassembly tools cannot identify the accurate instruction bound-
ary due to the inline data and mixed instruction set. We illustrate
three different types of failed cases in the following.

Figure 4(a) shows an example of the false positive of BAP. There
is a function starting from the offset 0x9cfe4, but BAP thinks the
function starts from the offset 0x9cfe8. That is because the function
signature used by BAP is not precise enough. Since ARM binaries
vary due to different compilers and compiling options, it is chal-
lenging to timely update function signatures. Figure 4(b) shows an
example of the false negative. BAP could locate the instruction at

406

An Empirical Study on ARM Disassembly Tools ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Ground	Truth	function	start	
0009cfe4									push							{r4,	lr}		
BAP	function	start	
0009cfe8									ldr								r3,	[r0,	#0x8]	
0009cfec									ldr								lr,	=0x80080000																																						
0009cff0									ldr								ip,	[r0]	
0009cff4									bics							r2,	lr,	r3	
0009cff8									mov								r4,	r0	
0009cffc									ldr								lr,	[ip]	
0009d000									beq								loc_9d040�

(a) An example of false positive

00077650									bl									sub_ee008																																												
00077654									sub								sl,	sl,	#0x1	
00077658									str								r0,	[sp,	#0x58]	
0007765c									mov								r3,	#0x2	
00077660									mov								r2,	#0x4	
	
000ee008									lsl								r2,	r1,	lsl	#1																																							
000ee00c									subs							r3,	r2,	#0x70000000	
000ee010									subshs					ip,	r3,	#0x200000	
000ee014									rsbshs					ip,	ip,	#0x1fc00000	
000ee018									bls								loc_ee038�

(b) An example of false negative

Figure 4: False positive and false negative of BAP

7904c:	0020d3e5				ldrb	r2,	[r3]�
79050:	010012e3				tst	r2,	#0x1�
79054:	4bfaff1a				bne	sub_7713c+2124=0x77988	
...	
	
77960:	302092e5				ldr	r2,	[r2,	#0x30]�
77964:	0c0052e3				cmp	r2,	#0xc�
77968:	0600000a				beq	sub_7713c+2124=0x77988	
...	
	
77980:	010012e3				tst	r2,	#0x1�
77984:	3204000a				beq	dword_7815c+2296�
77988:	020b11e3				lsrs	r2,	r0,	#0xc																																										
	
�
Function:	sub_7798a:�
7798a:	11e3								b	loc_77fb0�
7798c:	b504								lsls	r5,	r6,	#0x12�
7798e:	001a								subs	r0,	r0,	r0	
�

000710b4									movs							r0,	r5																																														
000710b6									bl									sub_70e8c																																										
000710ba									b										sub_70fb8+98	
	
sub_710bc:	
000710bc									ldrb							r4,	[r4,	r2,	lsr	#22]	
000710c0									ldrb							r4,	[r2,	r2,	lsr	#22]	
000710c4									ldrb							r4,	[r0,	r2,	lsr	#22]	
000710c8									strb							r4,	[lr,	r2,	lsr	#22]�

Thumb		✓

		ARM				✗

Indirect	jumped

Figure 5: Hopper misidentifies the instruction set.

d94a0:	0410a0e1				mov	r1,	r4�
d94a4:	34309de5				ldr	r3,	[sp,	0x34]�
d94a8:	c05a9fe5				ldr	r5,	[0x000d9f70]		
d94ac:	00609de5				ldr	r6,	[sp]�
	
d9f60:	08209de5				ldr	r2,	[sp,	8]�
d9f64:	102083e5				str	r2,	[r3,	0x10]�
d9f68:	4cd08de2				add	sp,	sp,	0x4c�
d9f6c:	f08fbde8				pop	{r4,	r5,	r6,	r7,	r8,	sb,	sl,	fp,	pc}�
d9f70:	78a46ad7				invalid�
d9f74:	56b7c7e8				stm	r7,	{r1,	r2,	r4,	r6,	r8,sb,	sl,	ip,	sp,	pc}	�
d9f78:	db702024				strths	r7,	[r0],	-0xdb�
d9f7c:	eecebdc1				invalid�
d9f80:	af0f7cf5				invalid	
.	.	.�
�

Figure 6: Radare2 cannot identify the inline data. It tries to
disassemble data as code, even the disassembled instructions
are invalid.

the offset 0x77650 and disassemble it using the right instruction
set. There is a function call instruction at offset 0x77650 and the
callee function is starting from the 0xee008. However, BAP cannot
identify the function (0xee008). This is because the prologue of the
function (0xee008) does not satisfy the signature used by BAP.

Figure 5 shows an example, where Hopper uses a wrong instruc-
tion set to disassemble the binary. The instruction set from the
offset 0x710bc is Thumb. However, Hopper disassembles it using
the ARM instruction set. We further locate the potential root cause
of this error. Specifically, the basic block (0x710bc) is indirectly
reached from other basic blocks, thus it is hard for the tool to de-
termine the right instruction set. Remember that, the instruction
set is determined by the last bit of the target address.

Figure 6 shows a failed case that is caused by inline data. For
instance, Radare2 disassembles the inline data (starting from the
offset 0xd9f70), although it is an invalid instruction. In fact, the
detection of inline data could be solved by a data reference analysis.
Specifically, if we find that the offset 0xd9f70 has been referred by
a load instruction at the offset 0xd94a8, then the offset 0xd9f70 is
inline data with high confidence, instead of code.

4.3 Different Factors (RQ2)
Our data set consists of binaries that are built using different compil-
ers, compiling options, and target architectures. Some of them are

000809fc									ldrb							r2,	[r6]		
000809fe									cmp								r2,	#0x7e											r2=0x7c	
00080a00									bls								loc_80a06														
00080a02									bl									sub_816cc	
														
00080a06									ldr								r1,	=0xb83ec	
00080a08									lsls							r3,	r2,	#0x2	
00080a0a									ldr								r3,	[r1,	r3]	
00080a0c									mov								pc,	r3	
	
	
000817d2									bl								sub_809fc																																												
000817d6									ldr								r3,	=dword_d1f20																																				
000817d8									ldr								r3,	[r3]	�

ARM:	
00070078									bl									sub_9eaa0																																												
(Ghidra	thinks	function	0x9eaa0	will	return)	
0007007c									ldr								r3,	[sp,	#0x78	+	var_44]	
00070080									tst								r3,	#0x1	
00070084									beq								loc_70184	
	
Thumb:	
000505bc									bl									sub_70668																														
(Ghidra	thinks	function	0x70668	is	a	non-return	function)		
(Ghidra	thinks	the	offset	from	0x505c0	is	inline	data)																																								
000505c0									movs							r3,	#0x1																																
000505c2									ldr								r2,	[sp,	#0x80	+	var_44]											
000505c4									tst								r3,	r2�

000b8414									db		0xd6		
000b8415									db		0x17		
000b8416									db		0x08		
000b8417									db		0x00

Figure 7: Ghidra performs differently when instruction set is
different

even obfuscated. They represent the diversity of existing binaries
in the wild. In the following, we further explore multiple factors
that affect the accuracy of disassembly tools.

4.3.1 Instruction Sets. ARM and Thumb instruction sets are widely
used in real-world binaries. To evaluate the impact of instruction
sets, we divide binaries into two categories. The first one contains
binaries compiled with the flag -mthumb, which use the Thumb
instruction set. We call them Thumb set binaries. The other one is
compiled without the flag -mthumb. By default, compilers use ARM
instruction set. We call them ARM set binaries.

Figure 8 shows the evaluation result. The solid line and dotted
line in the figure are used to denote the precision and recall, respec-
tively. The x-axis shows the name of tools and the y-axis represents
the average value of recall and precision for all the binaries. Note
that, this format also applies to Figures 9, 10, 11, 12, 13 and 14.

First, disassembly tools perform worse for Thumb set binaries,
i.e., they have lower precision and recall for the instruction bound-
ary and the function boundary. Specifically, BAP has very low recall
(0.40) and precision (0.01) for Thumb set binaries. We verified and
reported our findings to developers of BAP. They acknowledged that
BAP cannot handle Thumb binaries. Tools like Objdump cannot han-
dle Thumb binaries either. This is because Objdump uses the ARM
instruction set to linearly disassemble a binary without switching
the instruction set. There are significant differences between the
two instruction sets for tools like angr and Ghidra. This is because
these tools have much better support of the ARM instruction set
than the Thumb one.

Second, even for the binaries compiled from the same source
code, the Thumb instruction set makes an inconsistency between
the result. That is because the instruction set may have side effects
on the recognized property of identified functions. Figure 7 shows
such an example. The instructions at the offset 0x00070078 and
0x000505bc are same (BL), which represent a function call. Both
function calls refer to the same callee according to the source code.
However, since the instruction set is different, Ghidramisinterprets
that the callee function in the Thumb instruction set is a non-
return function, thus it completely ignores the code after that offset
(0x000505bc). Several similar cases are observed for the tool. This
is the reason why the recall is relatively low for Thumb set binaries
of Ghidra.

Third, the result of the function boundary correlates with the
instruction boundary. That’s because these two primitives have
a strong connection with each other. If the instruction boundary

407

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Muhui Jiang, Yajin Zhou, Xiapu Luo, Ruoyu Wang, Yang Liu, and Kui Ren

(a) Instruction boundary (b) Function boundary

Figure 8: The result of different instruction sets

(a) Instruction boundary (b) Function boundary

Figure 9: The result of different optimization levels

cannot be recognized precisely, it will greatly affect the recognition
of the function boundary, and vice versa.

Fourth, the result of the function boundary is worse for the
Thumb instruction set. We suspect that is due to the reuse of the
BL label instruction as both a function call and a direct branch for
Thumb set binaries. Specifically, the BL label (BLX label) instruc-
tions are used to directly invoke a function. For the ARM instruction
set, compilers use instructions, e.g., B label for a direct branch.
However, for the Thumb instruction set, the range of the B label
is limited (±2KB for 16-bit Thumb) [4]. Compilers tend to reuse
the BL label for a direct branch (range is ±4MB for 16-bit Thumb),
which is same with a function call. This confuses the disassembly
tools, which misinterpret direct branches as function calls. This
raises high false positives to identify the function boundary and
results in a low precision. Due to this, the proposed method to
identify function boundary without relying on function signatures
in Nucleus [36] is also ineffective, since it assumes the function call
instruction could be identified. The initial result of applying this
tool to binaries with the Thumb instruction set show that both the
precision and recall are below 0.12.
Summary: The Thumb instruction set does bring serious chal-
lenges to disassembly tools.

4.3.2 Optimization Levels. As shown in the Section 3.1, optimiza-
tion levels O2 and Os are mostly used ones. They represent the
optimization for performance and size, respectively. To evaluate

Table 4: F1 scores for different optimization flags with at
least 95% probability value. NA:not applicable.

Tool angr BAP Objdump Ghidra Radare2 Hopper IDA Pro Binary Ninja
Instruction 0 0 0 0.005 0.065 0.014 0.001 0.018
Function 0.033 0.046 NA 0.020 0.037 0.053 0.033 0.037

the impact of optimization levels, we divide binaries into two cate-
gories. One contains binaries compiled with the O2 flag, while the
other one contains binaries compiled with the the Os flag.

Figure 9 shows the result. Surprisingly, there is no significant
differences between these two flags in terms of both recall and
precision. To verify the conclusion that optimization level does not
bring significant difference, we conducted an extra hypothesis test.
We compute the F1 scores of the binaries in the two categories and
compute the differences between every pair of binaries (i.e. one
compiled with the flag O2 while the other one compiled with the
flag Os). We then randomly picked 40 samples and conducted t-test
on the samples. Table 4 shows the result. We noticed that different
optimization levels do not bring significant differences on all the
eight tools. The maximum differences in terms of F1 score is only
0.065.

We further explore the potential reason. It turns out that the
Os flag enables all the optimization methods introduced in the O2
flag. Besides, it includes the ones to reduce binary size [8, 10], e.g.,
reducing the padding size and alignment. These ones have little
impacts for the disassembly tool to identify the instruction and
function boundary.
Summary: Optimization levels (O2 and Os) do not bring significant
differences.

4.3.3 Compilers. GCC and Clang are two popular compilers. To
evaluate the impact of compilers, we build binaries (the SPEC
CPU2006) with both GCC and Clang. Figure 10 shows the eval-
uation result.

For the instruction boundary, most tools do not have obvious
differences between binaries built with different compilers except
BAP, which will be explained later. However, for the function bound-
ary, Radare2 and BAP are sensitive to binaries built with different
compilers. For Radare2, the precision of the function boundary for
binaries built with GCC is higher than the binaries built with Clang.
BAP has a higher precision of the function boundary for binaries
compiled with GCC. That is because BAP has a better collection of
function signatures for binaries compiled with GCC than the ones
compiled with Clang. Remember that, BAP does not disassemble the
instructions that are not in the detected functions. Thus, the pre-
cision of the instruction boundary will also be higher for binaries
compiled with GCC.
Summary:Compilers do not affectmost of the tools, except Radare2
and BAP, mainly due to the function identification method used by
them.

4.3.4 Target CPU Architectures. ARM has multiple architectures,
e.g., ARMv7 and ARMv5. Each architecture has different hardware
features. For instance, the 16-bit Thumb instruction (Thumb-1)
is available from ARMv4, while the 32-bit Thumb-2 instructions

408

An Empirical Study on ARM Disassembly Tools ISSTA ’20, July 18–22, 2020, Virtual Event, USA

(a) Instruction boundary (b) Function boundary

Figure 10: The result of different compilers

(a) Instruction boundary (b) Function boundary

Figure 11: The result of different CPU architectures

are available from ARMv6. Thus, if the binary is built for differ-
ent architectures, instructions generated by the compilers will be
different.

To evaluate the impact of binaries built with different CPU archi-
tectures, we use the binaries compiled for ARMv7 (march=armv7-a)
and AVRMv5 (march=armv5t). Figure 11 shows the result. We find
that disassembly tools perform better for binaries with the ARMv7
architecture, in terms of the precision of function boundary. This is
because the Thumb-2 instructions are supported in the ARMv7 ar-
chitecture, where the B label instruction has a much larger jump
range (±16MB) than the original one (±2KB in the Thumb-1 in-
struction set) [4]. Compilers tend to use the B label instruction
for the direct branch, instead of reusing the BL label instruction
that is usually for the direct function call (Section 4.3.1). Thus, dis-
assembly tools can distinguish the function call instruction with
the direct branch instruction, and identify the function boundary
more precisely.
Summary: For the ARMv7 CPU architecture, compilers use B
label instruction for a direct branch, instead of reusing the BL
label instruction. This helps the disassembly tools distinguish the
direct branch instruction with the function call instruction, leading
to a better precision value of identifying the function boundary.

4.3.5 System Types. ARM binaries exist in different types of sys-
tems. In our work, we also evaluate the impact of different types
of binaries. In particular, we use the binaries built from the Open-
WRT [19] (Linux based embedded systems used for routers, IP

(a) Instruction boundary (b) Function boundary

Figure 12: The result of system types

(a) Instruction boundary (b) Function boundary

Figure 13: The result of different obfuscation methods

cameras and etc.) and the Android open source project (AOSP ver-
sion 9), respectively. The result is shown in Figure 12.

In general, the result for binaries of OpenWRT is better than
the AOSP binaries. We further compared the binaries and found
that most of the binaries (80%) in Android are compiled using the
Thumb instruction set, while there are no binaries in OpenWRT
compiled using the Thumb instruction set. As explained in previous
sections, disassembly tools perform worse for Thumb binaries.
Summary: System types affect the result. This is due to the in-
struction set used in the binaries.

4.3.6 Obfuscation. To evaluate the impact of obfuscation to disas-
sembly tools, we use O-LLVM [43], an open-source obfuscator, to
compile the SPEC CPU2006. O-LLVM supports the following obfus-
cation methods. Specifically, instruction substitution (sub) is used
to replace standard operators with more complicated sequences of
instructions. The bogus control flow (bcf) changes a function call
graph by adding basic blocks. The control flow flattening (fla) uses
the control flow flatten algorithm [47] to create a large number of
fake control flows.

We apply each obfuscation method to each program for building
the binary, and then combine three methods together. We divide the
obfuscated binaries into four groups. In the first three groups, each
group contains the binaries that are obfuscated using one individual
method. The last group contains the binaries that are obfuscated
using all the three methods. The result is shown in Figure 13.

409

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Muhui Jiang, Yajin Zhou, Xiapu Luo, Ruoyu Wang, Yang Liu, and Kui Ren

(a) Instruction boundary (b) Function boundary

Figure 14: The Result of tools’ options.W/ andW/O IJmeans
the indirect jump resolving is enabled and disabled for angr.

We observe that obfuscation does not affect the instruction
boundary too much. However, the function boundary is greatly
affected by the control flow flattening. This is because the con-
trol flow flattening generates a huge number of fake control flows.
These fake control flows are using the BL label instructions in
the Thumb binaries for direct branches. These instructions confuse
the disassembly tools and introduce false positives to the function
boundary (Section 4.3.1).
Summary: Obfuscation introduces challenges to the disassembly
tools to locate the function boundary, especially the control flow
flattening. The root cause is due to the reuse of BL label instruction
for direct branches, which are inserted by the obfuscation tool.

4.4 Types and Options of Tools (RQ3)
4.4.1 Commercial vs Noncommercial Tools. In our work, we use
eight state-of-the-art tools. Among them, there are three commer-
cial tools, i.e., IDA Pro, Binary Ninja and Hopper, and five noncom-
mercial ones. We find that commercial tools have higher precision
and recall. As shown in Table 3, for the instruction boundary, the
three commercial ones are ranked as top three in terms of both pre-
cision and recall. For the function boundary, these commercial tools
are performing better than other ones, except that Radare2 has the
better precision. Moreover, the commercial tools are more stable
and robust. They do not trigger any segment faults or exceptions
during the analysis.
Summary: Compared with noncommercial ones, commercial tools
are more accurate, robust, and stable.

4.4.2 Disassembly Tools’ Options. Disassembly tools have different
options, which can affect the result. We use angr and Radare2 as
examples since they provide explicit options that could be changed
during the analysis. Figure 14 shows the result. Specifically, angr
provides an option to enable or disable the indirect jump resolving.
We observe that enabling the indirect jump resolving will increase
the precision and recall, since it can resolve more code sections that
could only be reached through indirect branches.

As for Radare2, it provides three different options. They are
aa,aaa (the default value) and aaaa. Option aa only analyzes the
function symbols, while option aaa adopts more analysis methods,
including function calls, type matching analysis, value pointers. Op-
tion aaaa uses the function preludes to locate more functions and

performs constraint type analysis, besides the analysis included in
the option aaa. We find that, complex analysis does not increase the
accuracy of the instruction boundary, but has impacts on the func-
tion boundary. That is because the option aa only detects functions
based on symbols, thus it misses most functions in the stripped
binaries that do not have symbols. Options aaa and aaaa adopt
more analysis methods, e.g., function preludes analysis, that greatly
improve the result.
Summary: Disassembly tools’ options affect the result. For angr,
enabling indirect jump resolving can improve the result, while
Radare2 has a better result for function boundary when using the
option aaaa.

4.5 Efficiency of the Tools (RQ4)
Efficiency is an important feature of disassembly tools. Efficient
tools can handle large binaries within a reasonable time. We report
the efficiency of the tools. In particular, we calculate the CPU usage,
CPU times and memory consumption during the analysis. Our
experiments are done in Ubuntu 18.04 with 128GB memory size
and 30 core intel(R) Xeon(R) Silver 4110 CPUs. Specifically, we use
the Python library psutil [21] to extract the related information
about resource consumption, and then use the function cpu_times
to obtain the CPU times. We also use the function cpu_percent
(interval = 1) to extract the CPU percentage. Note that this value
can be bigger than 100% in case of a process running multiple
threads. We use the function memory_info to obtain the memory
consumption. The memory size is the Resident Set Size (rss), which
is the non-swapped physical memory a process has used. The result
is shown in Figure 15.

CPU Percentage Binary Ninja consumes lots of CPU resource
and can reach to nearly 800% for some binaries. Ghidra ranks the
second. Half of the binaries would consume 200% of the CPU usage.
BAP consumes the least CPU percentage. However, according to our
observation, BAP spends a lot of time to analyze the binaries due to
the inefficient usage of CPU.

CPUTimesAmong all the tools, Ghidra consumesmost CPU times
compared with the other tools in nearly 80% binaries. There are
no significant performance differences for angr with and without
indirect jump resolving. Since the indirect jump resolving improves
the result, we recommend users to enable this option during anal-
ysis. For Radare2, the option aaa needs much more CPU times
compared with the option aa. However, the precision and recall of
the instruction boundary do not have a significance improvement.

Memory Consumption Among all the tools, Binary Ninja con-
sumes most of the memory (nearly 1 GB in maximum), while
Objdump consumes the least. IDA Pro is quite stable for the memory
usage. It consumes only around 100MB memory for nearly 70% of
the binaries.

4.6 Threats to Validity
Threats to validity mainly lies in the data set we choose. To reduce
this threat, we tried our best to make our data set representative,
we surveyed more than 200,000 objects in Section 3.1 to get the
most popular compiling options. We use the surveyed compiling
options to compile the benchmark programs to get the binaries.

410

An Empirical Study on ARM Disassembly Tools ISSTA ’20, July 18–22, 2020, Virtual Event, USA

(a) CDF plot of CPU percentage (b) CDF plot of CPU times (c) CDF plot of memory consumption

Figure 15: The evaluation result of performance. The legend in the latter two figures are same with the first one.

Considering the impact of obfuscation, we also use the state-of-
the-art obfuscators (i.e. O-LLVM) to compile the programs into
obfuscated binaries with different obfuscated mechanisms. Apart
from the binaries compiled from benchmark programs, we also
considered the programs in the real world. We use binaries in AOSP
and OpenWRT, which can represent the binaries for mobile systems
and IoT devices.

5 IMPLICATIONS
In this section, we discuss implications based on the evaluation
result and point out possible improvements.

ARM-specific disassembly strategies First, inline data is pop-
ular in ARM binaries. Previous research shows that there is few
inline data in x86/x64 binaries and the jump tables are located in the
.rodata section. However, inline data is very common in ARM bina-
ries, which increases the difficulty to locate instruction boundaries.
Second, there are two instruction sets, i.e., ARM and Thumb instruc-
tion sets. Detecting the right instruction set is challenging for disas-
sembly tools. Furthermore, we noticed that most tools do not have
good support on the Thumb instruction set, either with a wrongly
detected instruction set or a thrown exception. For instance, angr
throws exceptions and gets segment faults for several binaries with
the Thumb instruction set. Objdump can merely identify the Thumb
instruction set. Given the fact that the Thumb instruction set is
popular, especially in the binaries for mobile systems, there is an
urgent need to propose effective solutions. Third, since most ex-
isting works are focusing on x86 and x64 [25, 27, 28, 36, 61, 62],
some ARM specific mechanisms should be proposed to deal with
the instruction set switching. For instance, the hybrid disassembly
technique [68] could be leveraged to locate the inline data and dis-
tinguish between different instruction sets, with customizations
to adapt to the ARM architecture. Besides this, disassembly tools
could perform a further check on its disassembly result. In other
words, they could conduct a conflict analysis to improve the result.
For example, Radare2 explicitly knows when there is an invalid
instruction. In this case, it can either switch the mode, or further
check whether the invalid code is actually inline data through a
data reference analysis.

Mechanisms to identify the function boundary Our result
shows that there is still a large space to improve the effectiveness
of detecting the function boundary. Tools usually use function sig-
natures to identify functions. These signatures could be generated

through a machine learning based method. However, the machine-
learning based methods could be limited due to the incompleteness
of the training data sets [36]. For instance, the machine-learning
based method in BAP performs worse than most of the other tools
in detecting function boundaries. Furthermore, the mechanisms
that work well on x86/x64 [36] cannot be applied to ARM, because
ARM does not have a distinguished function call instruction, which
is required by the method. According to our evaluation, besides
function call, BL label is widely used in the Thumb instruction set
for direct branch. Disassembly tools cannot distinguish the usage
of BL label as direct branch with direct function call, resulting in
a low precision in terms of the function boundary.

We think a more effective algorithm to detect the function bound-
ary is needed. For example, developers could use the machine-
learning based mechanism to detect the function first, and then
conduct a static analysis by considering the internal logic between
different basic blocks to reduce the false positives and false nega-
tives. Moreover, disassembly tools can further analyze the BL label
instruction to understand whether it’s a function call. We think a
further analysis of the usage of the BL label instruction can greatly
improve the result of the function boundary.

Usability Tools have different user interfaces and plugin infras-
tructures. For instance, IDA Pro, Hopper and Binary Ninja have
user-friendly GUI interfaces, and provide easy-to-use Python APIs.
angr itself does not provide GUI, and is invoked purely through a
Python script. BAP has a good flexible architecture for extension.
However, the supported language Ocaml has a steep learning curve,
compared to the Python programming language. As for Radare2, it
is completely different from the other tools. It just loads the binary
and provides an interactive shell. Users have to leverage the shell
to perform the analysis. There are many different kinds of built-in
analysis phases.

We also observe that non-commercial tools suffer from the scal-
ability and stability. For instance, BAP cannot finish the analysis on
several binaries while angr will raise exceptions or get segment
faults on several binaries. Furthermore, tools may have different
options, which impact the usage of system resources. Users should
pick the right options according to the purpose. For example, if
users use the Radare2 to disassembly the instruction (and do not
care about the function boundary), they can use the option aa,
which satisfies the need and is much faster than other options.

411

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Muhui Jiang, Yajin Zhou, Xiapu Luo, Ruoyu Wang, Yang Liu, and Kui Ren

6 DISCUSSION
First, with the introduction of the ARMv8 architecture, there exist
64-bit ARM binaries, which are missed in this work. However, 32-bit
binaries are still themost popular ones. Due to the compatibility con-
cern, newARM architectures maintain backward compatibility with
old ones. Our findings in this paper can still be applied to ARMv8
(ARMv8 supports both AArch64 for 64-bit binaries and AArch32 for
32-bit binaries) and future versions of ARM as long as ARM does
not deprecate 32-bit ARM instruction set. Besides, AArch64 simpli-
fies the task of disassembly tools. This is because 32-bit ARM has
both 16-bit and 32-bit instructions and much more diverse branch
instructions. As shown in our evaluation, the switching between
instruction sets brings serious challenges to disassembly tools.

Second, we only evaluate eight state-of-the-art disassembly tools.
However, there exist some disassemblers that are either research
prototypes or not actively maintained. They are excluded from our
work. Moreover, we only evaluate two fundamental disassembly
primitives. We think other primitives such as direct control flow
graph or direct call graph are easy to be generated if the instruction
boundary and function boundary are located correctly2.

Third, the generation of the ground truth is an essential step.
Fortunately, the ARM ELF format introduces mapping symbols that
can help to distinguish between different instruction sets, and be-
tween code and inline data. By leveraging this information, we can
generate a complete and sound result for the instruction boundary.
At the same time, we could use the DWARF debugging information
to extract the ground truth of the function boundary. For other
primitives like control flow graph and call graph, they consist of
direct jumps and indirect jumps. Direct jumps can be built based
on the precise instruction boundary and function boundary, which
is the reason why we do not include them in the evaluation. For the
evaluation of indirect jumps, we cannot get a sound and complete
ground truth even if we have the source code. This is because some
jump targets can only be determined at running time. We leave the
evaluation of these primitives as one of the further works.

7 RELATEDWORK
The most related one is the study of x86/x64 disassembly tools [25].
However, there are several differences between the study and ours.
First, ARM supports mapping symbols, which can help us to ex-
tract the precise ground truth. Second, we focus on the metrics
of recall and precision when evaluating the different factors (e.g.
optimization levels and instruction modes), which can reveal the
tools’ limitations. Third, the conclusion of x86/x64 study cannot be
applied to ARM binaries. For example, inline data is very common
in ARM binaries, which is rare in x86/x64 binaries. Apart from
this, there are two instruction set in ARM architecture, which re-
quire more precise analysis mechanism for tools to identify the
right instruction set. Furthermore, the reuse of BL label instruc-
tion for both function call and direct branch brings challenges to
disassemblers to detect the function boundary.

Zhang et al. [68] combined the linear sweep and recursive tra-
versal. However, their work is for x86 binaries and there is no ex-
periment describing the accuracy of this algorithm. Ben et al. [29]
proposed the idea of speculative disassembly on Thumb binaries
2We understand that the indirect control flow transfer is still a challenging task.

with the assumption that binaries are not obfuscated. However,
their work is not scalable to real world binaries as ARM instruc-
tion set are widely used. Though Kruegel et al. [45] proposed an
algorithm on obfuscated binaries, their work does not target the
ARM architecture. Bauman et al. [28] proposed the idea of superset
disassembly, while Miller et al. [49] proposed the probabilistic disas-
sembly mechanism. However, they only focus on x86/x64 binaries.

Detecting the function boundary is also a challenging research
topic. Rosenblum et al. [54] use the machine learning technique to
identify functions. Other works [27, 30, 42, 44, 56] extended this idea
with different machine learning algorithms. However, it is rather
hard to build a general model. Other tools [20, 46, 58] use heuristics
or hard-coded signatures to identify the function boundary. The
fundamental problem is that there exist functions that do not have
the signatures or do not follow the heuristics. Qiao et al. [53] applied
static analysis to detect the function boundary. However, their work
only targets the x86 architecture. Dennis et al. [36] designed a new
methodology on detecting function boundaries by analyzing control
flow graphs. However, it assumes there is a distinguished function
call instruction (e.g., the call instruction in x86/x64) in the binary.
This mechanism cannot be applied to ARM due to no distinguished
function call instruction in ARM binaries.

As discussed, disassembly tools have beenwidely used in existing
works. Taegyu et al. [60] designed and implemented a rewriter for
ARM binaries. It requires precise disassembly results. Vulnerability
detection by applying binary similarity techniques [48, 64, 70] relies
on the accurate disassembly results. Different algorithms [50, 66,
68, 69] have been proposed to build control flow graphs. Since
some applications are leveraging off-the-shelf tools to disassemble
binaries, the evaluation can help improve these tools, which further
improves the result of applications that depend on these tools.

8 CONCLUSION
In this paper, we conduct the first comprehensive study on the
capability of eight ARM disassembly tools to locate instruction and
function boundaries, using diverse ARM binaries built with differ-
ent compiling options and compilers. We report our new findings,
which shed light on the limitations of the state-of-the-art disassem-
bly tools, and point out potential directions for improvements.

ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers for their com-
ments that greatly helped improve the presentation of this paper.We
also want to thank ZhiWang for the helpful discussion. This work is
supported in part by Hong Kong RGC Project (No. 152239/18E), the
National Natural Science Foundation of China (NSFC) under Grant
61872438, Leading Innovative and Entrepreneur Team Introduction
Program of Zhejiang (2018R01005), Zhejiang Key R&D 2019C03133,
Singapore National Research Foundation, under its National Cyber-
security R&D Program (Grant Nos.: NRF2018NCR-NCR005-0001),
National Satellite of Excellence in Trustworthy Software System
(Grant Nos.: NRF2018NCR-NSOE003-0001), NRF Investigatorship
(Grant Nos.: NRFI06-2020-0022), and DARPA under agreement num-
ber FA875019C0003.

412

An Empirical Study on ARM Disassembly Tools ISSTA ’20, July 18–22, 2020, Virtual Event, USA

REFERENCES
[1] Android Open Source Project. https://source.android.com/.
[2] ARM Mapping Symbols. http://infocenter.arm.com/help/index.jsp?topic=/com.

arm.doc.dui0474f/CHDGFCDI.html.
[3] Arm Mbed OS. https://www.mbed.com/en/.
[4] B, BL, BX, BLX, and BXJ. http://infocenter.arm.com/help/index.jsp?topic=/com.

arm.doc.dui0489c/Cihfddaf.html.
[5] Binary Ninja: A New Kind Of Reversing Platform. https://binary.ninja/.
[6] Buildroot: Making Embedded Linux Easy. https://buildroot.org.
[7] Capstone: The Ultimate Disassembly. http://www.capstone-engine.org/.
[8] Clang: Documentation. https://clang.llvm.org/docs/CommandGuide/clang.html.
[9] Debian Popularity Contest. https://popcon.debian.org/by_inst.
[10] GCC: Options That Control Optimization. https://gcc.gnu.org/onlinedocs/gcc/

Optimize-Options.html.
[11] Ghidra: A Software Reverse Engineering(SRE) Suite of Tools Developed by NSA.

https://ghidra-sre.org/.
[12] Hopper Disassembler. https://www.hopperapp.com/.
[13] IDA Pro. https://www.hex-rays.com/products/ida/.
[14] Issues submitted to BAP. https://github.com/BinaryAnalysisPlatform/bap/issues/

951.
[15] Issues submitted to Binary Ninja. https://github.com/Vector35/binaryninja-api/

issues/1359.
[16] Issues submitted to Ghidra. https://github.com/NationalSecurityAgency/ghidra/

issues/657.
[17] Issues submitted to Radare2. https://github.com/radareorg/radare2/issues/14223.
[18] Objdump - Display Information from Object Files. https://linux.die.net/man/1/

objdump.
[19] OpenWRT. https://openwrt.org/.
[20] Paradyn Project. Dyninst: Putting the Performance in High Performance Com-

puting. https://www.dyninst.org/.
[21] Psutil. https://psutil.readthedocs.io.
[22] Radare2. https://rada.re/r/.
[23] The FreeRTOS Kernel. https://www.freertos.org/.
[24] Tigist Abera, N Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew

Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. 2016. C-FLAT: control-flow attes-
tation for embedded systems software. In Proceedings of the 23th ACM Conference
on Computer and Communications Security.

[25] Dennis Andriesse, Xi Chen, Victor van der Veen, Asia Slowinska, and Herbert
Bos. 2016. An In-depth Analysis of Disassembly on Full-scale x86/x64 Binaries.
In Proceedings of the 25th USENIX Security Symposium.

[26] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher,
Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Understanding
the Mirai Botnet. In Proceedings of the 26th USENIX Security Symposium.

[27] Tiffany Bao, Johnathon Burket, MaverickWoo, Rafael Turner, and David Brumley.
2014. Byteweight: Learning to Recognize Functions in Binary Code. In Proceedings
of the 23th USENIX Conference on Security Symposium.

[28] Erick Bauman, Zhiqiang Lin, Kevin W Hamlen, Ahmad M Mustafa, Gbadebo
Ayoade, Khaled Al-Naami, Latifur Khan, KevinWHamlen, Bhavani M Thuraising-
ham, Frederico Araujo, et al. 2018. Superset Disassembly: Statically Rewriting x86
Binaries Without Heuristics. In Proceedings of the 25th Network and Distributed
Systems Security Symposium.

[29] M Ammar Ben Khadra, Dominik Stoffel, and Wolfgang Kunz. 2016. Speculative
Disassembly of Binary Code. In Proceedings of the International Conference on
Compilers, Architectures and Synthesis for Embedded Systems.

[30] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. 2011.
BAP: A Binary Analysis Platform. In Proceedings of the 23rd International Confer-
ence on Computer Aided Verification.

[31] Cristina Cifuentes and Mike Van Emmerik. 2001. Recovery of jump table case
statements from binary code. Science of Computer Programming 40, 2-3 (2001),
171–188.

[32] Andrei Costin, Jonas Zaddach, Aurelien Francillon, and Davide Balzarotti. 2014.
A Large-Scale Analysis of the Security of Embedded Firmwares. In Proceedings of
the 23rd USENIX Security Symposium.

[33] Andrei Costin, Apostolis Zarras, and AurÃľlien Francillon. 2016. Automated
Dynamic Firmware Analysis at Scale: A Case Study on Embedded Web Interfaces.
In Proceedings of the 11th ACM Asia Conference on Computer and Communications
Security.

[34] Daming D. Chen, Manuel Egele, Maverick Woo, and David Brumley. 2016. To-
wards Automated Dynamic Analysis for Linux-based Embedded Firmware. In
Proceedings of the 23rd Symposium on Network and Distributed System Security.

[35] Yaniv David, Nimrod Partush, and Eran Yahav. 2018. FirmUp: Precise Static
Detection of Common Vulnerabilities in Firmware. In Proceedings of the 23rd
International Conference on Architectural Support for Programming Languages and
Operating Systems.

[36] Andriesse Dennis, Asia Slowinska, and Bos Herbert. 2017. Compiler-Agnostic
Function Detection in Binaries. In Proceedings of the 2nd IEEE European Sympo-
sium on Security and Privacy.

[37] Michael J. Eager. Introduction to the DWARF Debugging Format. http://www.
dwarfstd.org/doc/DebuggingusingDWARF-2012.pdf.

[38] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. 2016. discovRE:
Efficient Cross-Architecture Identification of Bugs in Binary Code. In Proceedings
of the 23rd Network and Distributed System Security Symposium.

[39] Bo Feng, Alejandro Mera, and Long Lu. 2020. P2IM: Scalable and Hardware-
independent Firmware Testing via Automatic Peripheral Interface Modeling. In
Proceedings of the 29th USENIX Security Symposium.

[40] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng
Yin. 2016. Scalable Graph-based Bug Search for Firmware Images. In Proceedings
of the 23th ACM Conference on Computer and Communications Security.

[41] Grant Hernandez, Farhaan Fowze, Tuba Yavuz, Kevin RB Butler, et al. 2017.
FirmUSB: Vetting USB Device Firmware using Domain Informed Symbolic Execu-
tion. In Proceedings of the 24th ACM Conference on Computer and Communications
Security.

[42] Emily R Jacobson, Nathan Rosenblum, and Barton PMiller. 2011. Labeling Library
Functions in Stripped Binaries. In Proceedings of the 10th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools.

[43] Pascal Junod, Julien Rinaldini, JohanWehrli, and Julie Michielin. 2015. Obfuscator-
LLVM – Software Protection for the Masses. In Proceedings of the 1st International
Workshop on Software Protection.

[44] Nikos Karampatziakis. 2010. Static Analysis of Binary Executables Using Struc-
tural SVMs. In Proceedings of the 23rd Advances in Neural Information Processing
Systems.

[45] Christopher Kruegel, William Robertson, Fredrik Valeur, and Giovanni Vigna.
2004. Static Disassembly of Obfuscated Binaries. In Proceedings of the 13th
Conference on USENIX Security Symposium.

[46] Christopher Kruegel, William Robertson, Fredrik Valeur, and Giovanni Vigna.
2004. Static disassembly of obfuscated binaries. In Proceedings of the 12th USENIX
Security Symposium.

[47] Tımea László and Ákos Kiss. 2009. Obfuscating C++ programs via control flow
flattening. Annales Universitatis Scientarum Budapestinensis de Rolando Eötvös
Nominatae, Sectio Computatorica 30, 1 (2009), 3–19.

[48] Chandramohan Mahinthan, Xue Yinxing, Xu Zhengzi, Liu Yang, Cho Chia Yuan,
and Tan Hee Beng Kuan. 2016. Bingo: Cross-architecture cross-os binary search.
In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering.

[49] Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang, Xiangyu Zhang, and
Zhiqiang Lin. 2019. Probabilistic disassembly. In Proceedings of the 41st Interna-
tional Conference on Software Engineering.

[50] Mathias Payer, Antonio Barresi, and Thomas R Gross. 2015. Fine-grained Control-
flow Integrity Through Binary Hardening. In Proceedings of the International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment.

[51] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten
Holz. 2015. Cross-architecture bug search in binary executables. In Proceedings
of the 2015 IEEE Symposium on Security and Privacy. IEEE.

[52] Manish Prasad and Tzi-cker Chiueh. 2003. A Binary Rewriting Defense Against
Stack based Buffer Overflow Attacks.. In Proceedings of the USENIX Annual
Technical Conference.

[53] Rui Qiao and R Sekar. 2017. Function interface analysis: A principled approach
for function recognition in COTS binaries. In Proceedings of the 47th International
Conference on Dependable Systems and Networks.

[54] Nathan E Rosenblum, Xiaojin Zhu, Barton P Miller, and Karen Hunt. 2008. Learn-
ing to Analyze Binary Computer Code.. In Proceedings of the 23rd AAAI Conference
on Artificial Intelligence.

[55] Benjamin Schwarz, Saumya Debray, and Gregory Andrews. 2002. Disassembly
of Executable Code Revisited. In Proceedings of the 9th Working Conference on
Reverse Engineering.

[56] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing
Functions in Binaries with Neural Networks.. In Proceedings of the 24th USENIX
Conference on Security Symposium.

[57] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice: Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware. In Proceedings of the 22th Annual Symposium
on Network and Distributed System Security.

[58] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
et al. 2016. Sok:(State of) the Art of War: Offensive Techniques in Binary Analysis.
In Proceedings of the 37th IEEE Symposium on Security and Privacy.

[59] Saleh Soltan, Prateek Mittal, and H. Vincent Poor. 2018. BlackIoT: IoT Botnet of
High Wattage Devices Can Disrupt the Power Grid. In Proceedings of the 27th
USENIX Security Symposium.

413

https://source.android.com/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0474f/CHDGFCDI.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0474f/CHDGFCDI.html
https://www.mbed.com/en/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489c/Cihfddaf.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489c/Cihfddaf.html
https://binary.ninja/
https://buildroot.org
http://www.capstone-engine.org/
https://clang.llvm.org/docs/CommandGuide/clang.html
https://popcon.debian.org/by_inst
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://ghidra-sre.org/
https://www.hopperapp.com/
https://www.hex-rays.com/products/ida/
https://github.com/BinaryAnalysisPlatform/bap/issues/951
https://github.com/BinaryAnalysisPlatform/bap/issues/951
https://github.com/Vector35/binaryninja-api/issues/1359
https://github.com/Vector35/binaryninja-api/issues/1359
https://github.com/NationalSecurityAgency/ghidra/issues/657
https://github.com/NationalSecurityAgency/ghidra/issues/657
https://github.com/radareorg/radare2/issues/14223
https://linux.die.net/man/1/objdump
https://linux.die.net/man/1/objdump
https://openwrt.org/
https://www.dyninst.org/
https://psutil.readthedocs.io
https://rada.re/r/
https://www.freertos.org/
http://www.dwarfstd.org/doc/Debugging using DWARF-2012.pdf
http://www.dwarfstd.org/doc/Debugging using DWARF-2012.pdf

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Muhui Jiang, Yajin Zhou, Xiapu Luo, Ruoyu Wang, Yang Liu, and Kui Ren

[60] Kim Taegyu, Chung Hwan Kim, Choi Hongjun, Yonghwi Kwon, Brendan Saltafor-
maggio, Xiangyu Zhang, and Dongyan Xu less. 2017. RevARM: A Platform-
Agnostic ARM Binary Rewriter for Security Applications. In Proceedings of the
37th Annual Computer Security Applications Conference.

[61] Veen Victor, Goktas Enes, Contag Moritz, Pawlowski Andre, Chen Xi, Rawat San-
jay, Bos Herbert, Holz Thorsten, Athanasopoulos Elias, and Giuffrida Cristiano.
2016. A Tough Call: Mitigating Advanced Code-Reuse Attacks at the Binary
Level. In Proceedings of the 37th IEEE Symposium on Security and Privacy.

[62] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John
Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna. 2017. Ram-
blr: Making reassembly great again. In Proceedings of the 24th Annual Symposium
on Network and Distributed System Security.

[63] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural Network-based Graph Embedding for Cross-Platform Binary Code Sim-
ilarity Detection. In Proceedings of the 24th ACM Conference on Computer and
Communications Security.

[64] Xue Yinxing, Xu Zhengzi, Chandramohan Mahinthan, and Liu Yang. 2018. Accu-
rate and scalable cross-architecture cross-os binary code search with emulation.
IEEE Transactions on Software Engineering 45, 11 (2018), 1125–1149.

[65] Jonas Zaddach, Luca Bruno, Aurelien Francillon, and Davide Balzarotti. 2014.
AVATAR: A framework to support dynamic security analysis of embedded sys-
tems’ firmwares. In Proceedings of the 21st Symposium on Network and Distributed
System Security.

[66] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen Mc-
Camant, Dawn Song, and Wei Zou. 2013. Practical Control Flow Integrity and
Randomization for Binary Executables. In Proceedings of the 34th IEEE Symposium
on Security and Privacy. IEEE.

[67] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng Liu. 2014.
ViewDroid: Towards obfuscation-resilient mobile application repackaging detec-
tion. In Proceedings of the 2014 ACM conference on Security and privacy in wireless
& mobile networks. ACM, 25–36.

[68] Mingwei Zhang and R Sekar. 2013. Control Flow Integrity for COTS Binaries. In
Proceedings of the 22nd USENIX Security Symposium.

[69] Mingwei Zhang and R Sekar. 2015. Control Flow and Code Integrity for COTS
Binaries: An Effective Defense Against Real-world ROP Attacks. In Proceedings
of the 31st Annual Computer Security Applications Conference.

[70] Xu Zhengzi, Chen Bihuan, Chandramohan Mahinthan, Liu Yang, and Song Fu.
2017. Spain: security patch analysis for binaries towards understanding the
pain and pills. In Proceedings of the 39th International Conference on Software
Engineering.

414

	Abstract
	1 Introduction
	2 Background
	2.1 CPU Architectures and Instruction Sets
	2.2 Disassembly Strategies
	2.3 Function Identification
	2.4 Code Obfuscation

	3 Approach
	3.1 Build Programs
	3.2 Determine Disassembly Primitives
	3.3 Generate Ground Truth
	3.4 Extract the Result

	4 Evaluation
	4.1 Evaluation Metrics
	4.2 Overall Results (RQ1)
	4.3 Different Factors (RQ2)
	4.4 Types and Options of Tools (RQ3)
	4.5 Efficiency of the Tools (RQ4)
	4.6 Threats to Validity

	5 Implications
	6 Discussion
	7 Related Work
	8 Conclusion
	References

