
RiskRanker: Scalable and Accurate Zero-day Android
Malware Detection

Michael Grace †, Yajin Zhou †, Qiang Zhang ‡, Shihong Zou ‡, Xuxian Jiang †∗

†North Carolina State University ‡NQ Mobile Security Research Center
{mcgrace, yajin zhou, xjiang4}@ncsu.edu {zhangqiang, zoushihong}@nq.com

ABSTRACT

Smartphone sales have recently experienced explosive growth.
Their popularity also encourages malware authors to pene-
trate various mobile marketplaces with malicious applica-
tions (or apps). These malicious apps hide in the sheer
number of other normal apps, which makes their detection
challenging. Existing mobile anti-virus software are inade-
quate in their reactive nature by relying on known malware
samples for signature extraction. In this paper, we propose a
proactive scheme to spot zero-day Android malware. With-
out relying on malware samples and their signatures, our
scheme is motivated to assess potential security risks posed
by these untrusted apps. Specifically, we have developed
an automated system called RiskRanker to scalably analyze
whether a particular app exhibits dangerous behavior (e.g.,
launching a root exploit or sending background SMS mes-
sages). The output is then used to produce a prioritized
list of reduced apps that merit further investigation. When
applied to examine 118, 318 total apps collected from var-
ious Android markets over September and October 2011,
our system takes less than four days to process all of them
and effectively reports 3281 risky apps. Among these re-
ported apps, we successfully uncovered 718 malware samples
(in 29 families) and 322 of them are zero-day (in 11 fami-
lies). These results demonstrate the efficacy and scalability
of RiskRanker to police Android markets of all stripes.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and protection – In-

vasive software

General Terms

Security

Keywords

Android, Malware, RiskRanker

∗The names of the first two authors are in alphabetical order.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’12, June 25–29, 2012, Low Wood Bay, Lake District, UK.
Copyright 2012 ACM 978-1-4503-1301-8/12/06 ...$10.00.

1. INTRODUCTION
In recent years, smartphones have experienced explosive

growth. Gartner [13] reports that worldwide smartphone
sales in the third quarter of 2011 reached 115 million units –
an increase of 42 percent from the third quarter of the pre-
vious year. CNN [28] similarly shows that smartphone ship-
ments have tripled in the past three years. Not surprisingly,
multiple smartphone platforms are vying for dominance on
these mobile devices. At present, Google’s Android plat-
form has overtaken Symbian and iOS to become the most
popular smartphone platform, being installed on more than
half (52.5%) of all smartphones shipped [13].

The availability of feature-rich applications (or simply apps)
is one of the key selling points that these mobile platforms
advertise. By making it convenient for app developers to de-
velop and publish apps, and easy for users to locate and in-
stall these apps, platform providers hope to set up a positive
feedback loop in which apps will further attract users to their
platforms, which in turn drive developers to develop more
apps. Various organizations, therefore, have created app
stores to facilitate this process. Platform providers tend to
offer official distribution services such as Google’s Android
Market1 or Apple’s App Store. Cellular carriers also provide
their own markets and stores, such as AT&T’s AppCenter.
Moreover, there are third-party markets altogether, ranging
from publishing giant Amazon’s Appstore to small, specialty
markets like Freeware Lovers.

As platforms become more popular, it seems inevitable
that they begin to attract developers of a different kind:
malware authors. Moreover, the central role these markets
play makes it possible for a tremendous number of mobile
devices to be compromised in a very short time. For in-
stance, the DroidDream malware infected more than 260, 000
devices within 48 hours, before Google removed the related
malicious apps from the official Android Market [1]. In light
of these threats, there is a pressing need for market curators
to examine or vet apps before accepting them for publica-
tion.

Unfortunately, the sheer number of new apps uploaded
into these markets makes such examination challenging. Us-
ing the official Android Market as an example, in the first
half of 2011 alone, 223, 613 new apps were published [7],
which translates to an average of 1242 new apps each day.
Examining such a large number of apps manually – in a
timely fashion – is a daunting task. We could choose to de-
ploy mobile anti-virus software to scan these uploaded apps
before they are made available for download. However, the

1The official Android Market is now part of Google Play.

reactive nature of existing mobile anti-virus software makes
it inadequate in identifying new or mutated malicious apps.
Specifically, such software relies solely upon a priori knowl-
edge of malware samples in order to extract and deploy sig-
natures for subsequent detection. From another perspective,
malware authors may produce new malware variants, or ob-
fuscate existing ones, to evade detection. For instance, the
DroidKungFu malware has at least 5 different variants; each
variant was able to escape detection by existing anti-virus
software when it was first reported.

In this paper, we propose a proactive scheme to spot zero-
day Android malware by scalably and accurately sifting through
the large number of untrusted apps in existing Android mar-
kets, including both official and alternative ones. With-
out relying on malware specimens (and their signatures),
our scheme is motivated and accordingly designed to mea-
sure potential security risks posed by these untrusted apps.
Specifically, we divide potential risks into three categories:
high-risk, medium-risk, and low-risk. High-risk apps ex-
ploit platform-level software vulnerabilities to compromise
the phone integrity without proper authorization from users.
Medium-risk apps do not exploit software vulnerabilities,
but can cause users financial loss or disclose their sensitive
information. For example, these apps may illicitly subscribe
to premium services unbeknownst to the user. Low-risk apps
are similar, but milder; they may collect device-specific or
generic, generally readily-available personal information.2

Based on this risk classification, we have accordingly de-
veloped an automated system called RiskRanker to assess
the risks from existing (untrusted) apps for zero-day mal-
ware detection. The assessment performs a two-order risk
analysis. In the first-order risk analysis, we aim to directly
identify apps in high- and medium-risk categories. For ex-
ample, if an app contains code designed to exploit platform-
level vulnerabilities (Section 2), it will be flagged as a high-
risk app. In the second-order risk analysis, we perform a fur-
ther investigation to uncover suspicious app behavior. For
example, some malicious apps may be designed to encrypt
exploit code to evade our first-order analysis. With that in
mind, we develop systematic ways to locate those apps and
map them to corresponding risk categories. By focusing on
these high- and medium-risk apps, we can substantially re-
duce the number of suspicious apps that require subsequent
verification.

We have implemented a RiskRanker prototype and eval-
uated it using 118, 318 apps (104, 874 distinct apps)3 col-
lected over a two-month period, i.e., September and Octo-
ber 2011. We deploy our system and run it in parallel on
a local cluster of five machines. The evaluation results are
promising. In total, it takes about 30 hours to process all
these apps and identify high- and medium-risk apps. Once
this process finishes, the first-order risk analysis module re-
veals 2461 suspicious apps and the second-order risk analysis
reports 840 apps. In total, there are 3301 suspicious apps
(of which 3281 are unique – as some apps may be flagged
by both risk analyses). When such an app is reported, our
system also automatically generates the related execution
paths that may lead to security risks. With these detailed
execution paths, it took a single co-author two more days

2Because of that, we in this paper mainly focus on the first
two categories, i.e., high-risk and medium-risk.
3In this paper, we consider apps that have the same SHA1
value to be identical.

to examine these apps. In other words, our system signif-
icantly reduces the processing time of these two months’
worth of apps to less than four days! We believe these re-
sults show that RiskRanker can scale to handle the current
rate at which new apps are being submitted to the various
Android markets.

More importantly, among these 3281 unique suspicious
apps, we successfully uncover 322 (or 9.81%) zero-day mal-
ware samples4 that belong to 11 distinct families. (The first-
and second-order risk analyses contribute to identifying 40
and 282 zero-day malware instances, respectively.) In addi-
tion, from the same dataset, we also identify a further 396
(12.07%) malware samples from 18 known malware families.
As a result, from our two-month dataset’s apps, RiskRanker
successfully detects 718 (21.88% of 3281 suspicious apps)
malware samples representing 29 different families.

In summary, this paper makes the following contributions:

• To uncover zero-day Android malware in existing An-
droid markets, we propose a proactive scheme (with
two-order risk analysis) to assess the security risks in-
troduced by these apps. To the best of our knowledge,
RiskRanker is the first system that performs such a
large-scale security risk analysis for zero-day malware
detection.

• We have implemented a RiskRanker prototype and
used it to examine 118, 318 apps collected in a two-
month period – September and October 2011 – from
multiple Android markets. Using RiskRanker, process-
ing this large number of apps takes less then four days.
Among 3281 suspicious apps it reports, we find 718 ma-
licious apps (from 29 malware families), 322 of them
being zero-day (in 11 different families). These find-
ings demonstrate the scalability and effectiveness of
our scheme.

The rest of this paper is organized as follows: we first
describe our system design in Section 2 and then present our
prototyping and evaluation results in Section 3. After that,
we discuss possible limitations and further improvements in
Section 4. Finally, we discuss related work in Section 5 and
conclude our work in Section 6.

2. DESIGN
RiskRanker is designed to scalably and accurately sift

through a large number of apps from existing Android mar-
kets to uncover zero-day malware. By assessing and priori-
tizing potential risks from these untrusted apps, we aim to
use the system to significantly narrow down the search space
to a manageable size, which naturally raises the challenging
requirements of scalability, efficiency, and accuracy. More
specifically, our system must scale to handle hundreds of
thousands of apps in a timely and resource-efficient manner.
The system also needs to be efficient to winnow its input
down to a list that is short enough to verify manually, and
accurate enough to not miss malicious apps.

Figure 1 shows the overall architecture of RiskRanker.
To meet the above design goals, we assess and translate

4In this paper, we consider a malicious app to be zero-day if
it has not been reported before and cannot be detected by
anti-virus software at the time of discovery.

...

Risk Ranker

100%

3.13%

0.68%

Zero-day Malware

Risky Apps

First-order

Risk Analysis

Second-order

Risk Analysis

Figure 1: The RiskRanker architecture

potential security risks into corresponding detection mod-
ules of two orders of complexity. In particular, we analyze
each app from an Android market with a set of analysis
modules designed to detect behaviors that we classify as
high- or medium-risk: The first-order modules handle non-
obfuscated apps by evaluating the risks in a straightforward
manner; The second-order modules capture certain behav-
iors (e.g., encryption and dynamic code loading) that are
in themselves not of concern, but that in conjunction with
others may form malicious patterns and be instrumental to
detect stealthy malware.

These analysis modules ultimately produce output that
includes a severity rating and related evidence to verify the
behavioral pattern in each reported app. This output is then
sorted by severity to produce a prioritized list of suspicious
apps that merit further analysis. In the remainder of this
section, we will detail these analysis modules.

2.1 First-Order Analysis
The first-order analysis modules are designed to scalably

sift through untrusted apps and expose those high- and
medium-risk apps.

Detecting high-risk apps RiskRanker flags any app as
high-risk if it carries attack code that will exploit platform-
level vulnerabilities in the OS kernel or privileged daemons
to obtain superuser privileges. In Android, normal apps are
typically constrained by the Linux process boundary. They
are allowed to communicate with each other and may choose
to contain native code (for improved performance with na-
tive speed execution). However, such a design also exposes
the underlying OS kernel as well as other privileged daemons
to malicious exploitation. If successful, such exploitation
will allow an untrusted app to completely bypass the built-
in security mechanisms, allowing it unfettered access to the
device. Therefore, these exploits pose one of the greatest
threats to users.

In order to detect these platform-level exploits, we distill
each known vulnerability into a corresponding vulnerability-

Table 1: An overview of existing platform-level ex-

ploits in Android

Exploit
Name

Vulnerable
Program

Malware with
the Exploit

Asroot [9] Linux Kernel Asroot

Exploid [8] init
DroidDream, zHash

DroidKungFu
GingerBreak [29] vold GingerMaster
KillingInThe
NameOf [2]

ashmem -

RATC [12]
Zimperlih [30]

adbd
zygote

DroidDream
BaseBridge
DroidKungFu
DroidDeluxe
DroidCoupon

zergRush [20] libsysutils -

specific signature [52] to capture its essential characteristics,
which will be exhibited when the vulnerability is being ex-
ploited. For example, Exploid [8] takes advantage of a vul-
nerability in the privileged init daemon by not verifying the
source of an incoming NETLINK message (which contains com-
mands for execution). Accordingly, we extract the following
two preconditions as its signature: (1) it sends a message via
the socket interface; (2) the message is in a particular format
such as “ACTION=add%DEVPATH=”, which is used to trigger the
vulnerability.

In Table 1, we show the list of known platform-level ex-
ploits in Android as well as the representative malware fam-
ilies that make use of these exploits. Notice that if the RATC
exploit is launched by an app, it actually exploits a bug in
Zygote instead of the adbd daemon. In this case, it behaves
like the Zimperlih exploit, so we use RATC to represent both
of these exploits.

To reduce the number of apps for exploit detection, we
pre-process each app to detect the presence of native code.
For each occurrence, we verify it with these signatures to
spot the presence of any of these root exploits. If present,
we flag the app as high-risk and take a note of the related
vulnerability. Among our dataset of 104, 874 distinct apps,
we found that 9.42% contain native code.

Detecting medium-risk apps RiskRanker reports as
medium-risk those behaviors that could result in the user
being charged money surreptitiously or that upload unde-
niably private information to a remote server. For exam-
ple, Android has a group of permissions named android.-
permission-group.COST_MONEY, which is defined as “permis-
sions that can be used to make the user spend money with-
out their direct involvement.” [17] If abused, these features
can be used to construct malware such as SMS Trojans,
which send text messages to premium phone numbers that
result in charges being placed on the user’s phone bill. Such
malware is popular due to the direct return it provides to
malware authors, but these same features do have legitimate
uses, typically in the form of instant-messaging, reminder,
or social-networking apps.

To distinguish between such legitimate and malicious uses
of potentially costly functions, we leverage the associated se-
mantics defined in Android. Specifically, Android apps make
extensive use of callbacks, and each such callback is invoked
by the framework under well-defined conditions. As an ex-

ample, a button on the screen, when pressed by the user,
ultimately will lead to onClik(...) callback. Malware that
intends to charge the user without their knowledge is un-
likely to do so via such a callback handler – as such handlers
are triggered by user interaction. Similarly, malware that
transmits sensitive data is unlikely to prompt the user be-
fore doing so. Accordingly, in our search for risky behaviors,
we look for code paths that can cost the user money without

implying such user interaction.
To find such code paths, we perform static analysis on

the reverse engineered Dalvik bytecode contained in each
app. In particular, we elect to use a conservative program
analysis, based on symbolic execution, to determine which
callbacks can result in a call to a method of interest. This
process involves both control- and data-flow analysis tech-
niques in a bid to unambiguously identify the code path.
While data-flow analysis presents some challenges on An-
droid, the properties of Dalvik’s bytecode assist us with the
control-flow portion of our work.

To elaborate, Dalvik (similar to Java) requires that the
control-flow graph of an app should be reliably determined
in advance. When Dalvik code is loaded for execution, a
static verifier is run to ensure that all references in the code
can be resolved. To facilitate this process, the bytecode itself
does not contain operations that can lead to ambiguity: for
example, there are no computed jumps or field accesses via
memory addresses. At any given point in a Dalvik program’s
execution, the type of all its registers are known and there
are a limited number of subsequent instructions that can be
branched to. Furthermore, all method and field references
are by name, and method execution must always start at
the first instruction in the method.

We combine these factors to remove much of the ambiguity
that makes the static analysis of Dalvik bytecode potentially
unreliable. However, the requirements of the static verifier
and our RiskRanker system only overlap but so far. Specif-
ically, the Dalvik’s static verifier only aims to ensure that
the code being loaded is well-formed, and its notions of well-
formedness concern only methods and classes. The verifier
therefore only is designed to perform intra-method dataflow
analysis, to determine the type of each virtual register at
each point in the program. However, Android apps have a
very complicated lifecycle, one that often features concur-
rency and does not require that entry points be called in
any strict sequence. Given the sheer number of developers
and developer styles any large-scale static analysis system
will encounter, inter-method dataflow analysis will neces-
sarily introduce ambiguity for RiskRanker. This ambiguity
presents four challenges that merit further discussion.

The first source of control-flow graph ambiguity involves
the class hierarchy. When a method signature specifies that
a parameter is an object, this can lead to unnecessary edges
from that method in the call graph. For example, all objects
must ultimately descend from the java.lang.Objet class,
which has a toString() method. Consider what happens
when a method takes a java.lang.Objet as a parameter,
and subsequently calls that parameter’s toString() method:
the method call could resolve to the toString() method of
literally any class! To mitigate this problem, we employ
a form of points-to analysis. Type information within a
method is guaranteed to be consistent by the static veri-
fier; therefore, when considering a potential code path, we
propagate this intra-method type information across method

Algorithm 1: Android app analysis

Input: method call of interest, set of entry points
Output: code path, constraints

states = (method call site, no constraints)

foreach state ∈ states do
remove state from states

foreach predecessor of state do

if predecessor is an entry point of interest then
report the code path and constraint
information

if predecessor is a branch comparison then
states+ =
(predecessor, existing constraints +
comparison constraints)

else
states+ =
(predecessor, existing constraints)

invocations, thereby reducing the set of methods such an
ambiguous method call could resolve to.

Second, the possible values that each term in a comparison
can take must be known to determine which paths through
a program are feasible. Since the verifier does not check
this, it is perfectly legal to compile an Android app that has
large tracts of dead (unreachable) code, so long as that code
is composed of legal methods and classes. In RiskRanker,
we address this issue by treating the comparisons encoun-
tered along a code path as constraints; the problem then
becomes one of constraint satisfaction, where feasible paths
have satisfiable constraints. Note that concurrency can still
lead to certain ambiguity, as values tested in a comparison
may be defined in other threads. As these values are not de-
fined along the current code path, they result in satisfiable
constraints if any consistent value exists that would result in
the correct branches being taken along the code path. How-
ever, it is possible that this consistent value may not exist
in practice, resulting in some false positives. We note that
this problem is, in the general case, not decidable.

In addition, there are two last potential sources of ambigu-
ity: native code and the reflection language feature. Fortu-
nately, both can be flagged easily, as their APIs and usages
are well-defined. Native code is obviously of interest to other
analysis modules already, and so is itself a cause for concern.
Reflection, on the other hand, simply allows for a program-
mer to bypass the static verifier in order to call a method
by name – where that method’s name is given as a string
object, rather than in bytecode. Fortunately, this conflu-
ence of the data-flow and code-flow graphs of an app is only
problematic if the arguments originate outside the current
method body (recall that data-flow within a method is well-
defined). Therefore, it is possible to ignore a large number
of reflection calls, as many such calls use constant arguments
in practice. Reflection calls that rely on data defined else-
where in the current code path can be resolved similarly by
stitching together the information that is known from the
intra-method dataflow analysis performed in the course of
static verification. Unfortunately, it is possible that some
data used for reflection originates outside the scope of the
current thread. In this case, we can again employ points-to

analysis to determine the set of possible values this data can
take, and thus the set of methods or fields the reflection call
could be referencing.

Mindful of the challenges outlined above, we construct the
control-flow graph, locate each method call of interest (e.g.,
those can be potentially abused for background sending of
SMS messages), and perform reachability analysis. Our ap-
proach is summarized in Algorithm 1: For each method call
of interest, we subsequently traverse the control-flow graph
in reverse, looking for a callback method that does not im-
ply user interaction. If such a method is found, we report
the call sequence that leads to the potentially risky method
call, which can then be verified. Due to the stability of these
method call chains, we can further use white-listing to elim-
inate known-safe paths from repeated analysis (i.e., those
paths that arise from a commonly-included library need only
be verified once).

Our experience indicates that this algorithm is generic
and can be readily extended to handle information leaks
that disclose information that directly concerns the user’s
identity, such as their recent calls or the list of accounts.
In particular, the general approach we take essentially em-
ploys backwards slicing to determine where the arguments
to a network call originated from. If this slicing leads to
a method call that obtains personal information, we flag
the app as having a potential information leak and report
the corresponding execution path. In other words, we es-
sentially treat the propagation of dangerous information as
a form of the type-resolution problem we addressed ear-
lier. Intra-method dataflow is unambiguous on Android,
and inter-method dataflow can be pieced together by prop-
agating interesting data through the call chain. However,
the type of fields used to store sensitive information must
also be inferred, and such fields might be defined in other
threads. We solve it by applying forward slicing to see what
fields depend on the data returned by a sensitive call. This
field information is then retained and referenced by the back-
wards slicing process used to determine where the arguments
to a network operation originate from.

2.2 Second-Order Analysis
Our first-order analysis modules are mainly designed to

handle non-obfuscated apps and may fall short for stealthy
malware that intensively encrypts or dynamically changes
its payload. To mitigate these weaknesses, we accordingly
develop second-order analysis modules to collect and corre-
late various signs or patterns of behavior common among
malware yet not among legitimate apps.

Pre-processing The first step in our second-order anal-
ysis is to capture certain distinct behavior which may not be
malicious in itself but is commonly abused by existing mal-
ware. One example is the inclusion of a secondary (child)
app inside a host app. The secondary app typically exists as
an internal .apk or .jar file containing its executable code
and is saved in the host app’s assets or res directory that can
be programmatically accessed. Note that the inclusion of
these secondary apps is not inherently suspicious. In fact, it
is a common practice that some popular ad and mobile pay-
ment service providers require the host apps to embed their
ad and mobile payment frameworks inside. However, if the
host app is malicious, the same mechanism can be leveraged
to dynamically load and execute the embedded (malicious)
child app. Motivations for this behavior are many. The child

app can request additional privileges or persist after the host
app has been uninstalled. Another example is that many le-
gitimate apps use the Java encryption APIs to encrypt their
communications and data. However, these same methods
can be misused by malware to encrypt their malicious na-
tive code, frustrating our high-risk analysis module’s efforts
to detect embedded root exploits.

To recognize these abusable behaviors, we collect and ag-
gregate various information for our second-order analysis.
In our current prototype, RiskRanker is designed to auto-
matically collect the following information: (1) the location
of the secondary app; (2) background dynamic code load-
ing and related execution path(s); (3) programmed access
to internal assets/res directories; (4) use of encryption and
decryption methods; and (5) native code execution (e.g.,
Runtime.exe(...)) and JNI accesses.

Encrypted native code execution The detection of
high-risk apps in our first-order analysis sought to detect
the presence of platform-level exploits in an app by using a
set of signatures we developed. However, such an approach
may be thwarted if malware authors attempt to encrypt the
exploit code. In fact, many known Android malware store
their exploit code in encrypted form within the assets or
res directories, from which this encrypted code is read, de-
crypted and executed at runtime. Fortunately, these related
behaviors are collected during our pre-processing phrase and
can be correlated for their detection.

Specifically, in a normal scenario, native binaries are sup-
posed to be contained within an app’s lib directory. The
assets and res directories are designed to contain art assets,
user-interface descriptions and the like, but can also con-
tain arbitrary data. The Android framework provides two
classes, android.ontent.res.AssetManager and android.ontent.
res.Resoures, that gate access to this data. While many
accesses to such data are innocent enough, accessing these
systems in a code path that also contains the encryption and
execution methods should raise red flags, as storing native
binaries in such non-standard circumstances may signal that
the app has something to hide.

In addition, Android contains the Java javax.rypto pack-
age, which provides a number of encryption and hashing
functions in an easy-to-use, standardized form. While we
recognize that malware could use their own decryption meth-
ods, or bundle third-party crypto libraries, the convenience
this package provides appears alluring to malware authors.
Consequently, in our current prototype, we opt to check for
the use of its APIs.5

Moreover, in possible execution paths, we also look for
related JNI calls as well as other methods (e.g., Runtime.-
exe(...)) to invoke native code. This is based on the
observation that after the encrypted native binaries have
been loaded and decrypted, they will be executed.

In RiskRanker, we combine the above three pieces of infor-
mation together to detect encrypted native code execution.
If an app programmatically accesses the assets or res direc-
tories, the encryption APIs, and calls Runtime.exe(...) in
one execution path, then we assume that the app is execut-
ing an encrypted native binary stored in the assets or res
directories. We classify such apps as potentially high-risk,
just as with the earlier high-risk app detection in our first-

5A more sophisticated system could employ heuristics to
detect the presence of in-app cryptographic methods [53].

Table 2: Overall results from RiskRanker

Family # Samples Zero-day?
First-Order Risk Analysis Second-Order Risk Analysis

High-Risk Medium-Risk
Encrypted Native
Code Execution

Unsafe Dalvik
Code Loading

Androidbox 13
√

AnserverBot 185
√ √ √

BaseBridge 7
√

BeanBot 6
√ √

CoinPirate 1
√

DogWars 1
√

DroidCoupon 1
√ √

DroidDream 2
√

DroidDreamLight 30
√

DroidFun 1
√ √

DroidKungFu1 3
√

DroidKungFu2 1
√ √

DroidKungFu3 213
√

DroidKungFu4 96
√ √

DroidKungFuSapp 2
√ √

DroidLive 10
√ √

DroidStop 7
√ √

FakePlayer 1
√

Fjcon 9
√ √

Geinimi 24
√ √

GingerMaster 2
√

GoldDream 21
√

Kmin 48
√

Pjapps 17
√

Pushme 1
√

RogueLemon 2
√ √

RuPaidMarket 3
√

TigerBot 3
√ √

YZHC 8
√

Total 718 11 6 20 5 1

order analysis. This module effectively leads to the discovery
of 315 malware samples in five malware families, including
two zero-day malware families (Section 3).

Unsafe Dalvik code loading Our next second-order
detection module captures the unsafe behavior of dynami-
cally loading untrusted Dalvik code. Typically, the bytecode
that runs in a Dalvik virtual machine is from the lasses.dex
file embedded in the app or the framework itself. For exten-
sibility, Android provides a mechanism that can be used to
load and execute bytecode from an arbitrary source at run-
time. Specifically, an app can leverage the DexClassLoader
feature [11] to load classes from embedded .jar and .apk
files.

The dynamic loading of new class files could potentially
change the code to run and thus reduce the effectiveness of
our earlier static-analysis efforts (as our analysis does not
have access to all of the code that is about to run). On the
other hand, we cannot consider all apps with dynamic load-
ing behavior malicious, because this behavior can be used
legitimately. For example, apps can use this mechanism to
update their functionality without reinstalling the app itself.
In fact, among the 118, 318 apps we analyzed, 3.90% of them
are using DexClassLoader. In our prototype, we further com-
bine the dynamic code loading behavior with the existence of

a secondary package. This can significantly reduce the num-
ber of apps for further analysis to only 424 apps. This com-
bination leads to the discovery of the zero-day AnserverBot
[21] malware, which accounts for 184 distinct samples.

3. PROTOTYPING & EVALUATION
We have implemented our RiskRanker prototype in Linux

using Java and Python. The first- and second-order risk
analysis modules are mainly implemented in Python, except
for the medium-risk detection module, which is written in
Java. In total, there are 3.6K lines of Python and 8.7K of
Java code.

Our current prototype contains a high-risk root exploit
detection module that is sensitive to seven kinds of known
root exploits (Table 1). It also contains a medium-risk de-
tection module that scans for four different kinds of behav-
ior: sending background SMS messages, making background
phone calls, uploading call logs and uploading received SMS
messages. Of the medium-risk metrics, we find that back-
ground SMS sending behavior is the most useful, and will
principally discuss results arising from it.6

6It is important to note that some malware samples such as
GoldDream were only detected due to other behaviors (e.g.,
uploading SMS messages to a remote server).

Table 3: Malware discovery in high-risk apps

Apps with
native code

High-risk
apps

Actual
malware

of apps 9877 24 14
Percentage 9.42% 0.02% 0.01%

In our prototype, to quickly index and look up various
information associated with the collected apps, we use a
MySQL database. In particular, before running our system,
we will pre-process each app and extract related information
into the database (e.g., where the app was downloaded from,
whether it contains native code, etc.).

To demonstrate the effectiveness and accuracy of our pro-
totype, we collected 118, 318 apps over a two-month period
– September and October 2011 – from 15 different Android
markets, including the official one and 14 other alterna-
tive markets. As the same app may be present in multiple
Android markets, we have in total 104, 874 distinct apps:
52, 208 (49.78%) of them came from the official Android
Market and the remaining 52, 666 (50.22%) from other mar-
ketplaces. Our prototype was deployed on a local cluster of
5 nodes, each containing 8 cores and 8GB of memory. The
actual run of our system shows that it can handle approxi-
mately 3500 apps per hour, which means that it took about
30 hours to process all of the apps in our sample.

Among the collected 104, 874 distinct apps, RiskRanker
successfully uncovers 718 malicious apps in 29 malware fam-
ilies, including 322 zero-day malware that belong to 11 dis-
tinct new families. In Table 2, we show a detailed break-
down of our results. Specifically, the first-order risk analysis
reveals 220 malware samples from 25 families. The second-
order risk analysis leads to 6 malware families with 499 sam-
ples. One malware family (DroidKungFu2) has a sample de-
tected by both methods, while another (AnserverBot) has its
host app detected by the second-order techniques and its
child app by the first-order techniques. These results show
the effectiveness of RiskRanker.

In the following, we examine each risk analysis module
and present related results.

3.1 First-Order Analysis

Detecting high-risk apps As mentioned earlier, we
consider apps with root exploits to be high-risk apps. In or-
der to detect them, we first locate all apps with native code
and then compare their native code with the signatures of
known root exploits. More specifically, we check the prop-
erties of each file in the app to determine whether it is an
ELF binary. If so, we then scan this ELF file with our prede-
fined root exploit signatures. If there is a match, our system
reports it for manual verification.

In Table 3, we report the detection results of high-risk
apps. Overall, 9877 (or 9.42%) of collected apps contain
native code. Among them, we find that 24 embed root ex-
ploits. So far, we only observe three exploits being used in
our dataset: Exploid, RATC and GingerBreak, with RATC being
the most popular – it accounts for more than 60% of the
detected samples.

Further analysis shows that among these 24 high-risk apps,
14 are actually malware from 6 distinct families. Figure 2
shows the breakdown of samples from each of these mal-
ware families: 50% of the detected malware samples are

Figure 2: The breakdown of detected malware with

root exploits

BaseBridge. From the results, we also successfully uncover
two zero-day malware, i.e., GingerMaster [14] and DroidCoupon [23].

In particular, GingerMaster is the first malware discovered
in the wild that makes use of a root exploit capable of root-
ing Android 2.3 devices. Similar to many others we detected
in this study, GingerMaster repackaged its exploit code into a
popular legitimate app (in this case, one that displays pho-
tographs of models). The embedded exploit code, once in-
stalled, will be triggered to root the phone and subsequently
leverage the elevated privilege to download and install other
apps from a remote server without the user’s knowledge.
The DroidCoupon malware similarly piggybacks on popular
coupon apps by enclosing the RATC root exploit. If success-
ful, it will also attempt to fetch additional apps from a re-
mote server and install them silently. To help conceal their
natures, both GingerMaster and DroidCoupon employ obfusca-
tion techniques. For example, the root exploits used in these
two malware families are saved as picture files, having .png
as the filename suffix. DroidCoupon also disguises command
strings and URLs as integer arrays.

Interestingly, our system spots one Geinimi [22] sample,
which “normally” does not have a root exploit in its pay-
load. In this case, the Geinimi sample is a repackaged ver-
sion of om.orner23.android.universalandroot, a legitimate
jail-breaking app with root exploits. Because of that, it is
also detected by our system.

Besides these 14 malware, there are 10 additional apps
that appear to have legitimate reasons to contain a root ex-
ploit: for example, z4root (4 samples) advertises itself as
a one-click solution to root devices, while universalandroot
(2 samples), itfunzsupertools (2 samples) and holenteh (1
sample) provide very similar functionality. The last one is a
security app, om.lbe.seurity (SHA1: 34d90bbed455b370349
0a606e71d02328941a4), which contains the GingerBreak root
exploit. In this particular case, we cannot determine whether
this app should be considered malicious. Our sample con-
tains several security apps, however, and none of the others
required such functionality, so this practice is certainly un-
usual.

Medium-risk apps Medium-risk app detection involves
constructing the whole program function call graph and then
checking whether any reachable paths exist between a set of
source methods and a set of sink methods. For background
SMS sending behavior, we use sendTextMessage/sendMultipart
TextMessage(...) in class SmsManager as sink methods. With

Table 4: Malware discovery in medium-risk apps

Family # Samples Zero-day?
Androidbox 13
AnserverBot 1

√

BeanBot 6
√

CoinPirate 1
DogWars 1

DroidDreamLight 30
DroidFun 1

√

DroidLive 10
√

DroidStop 7
√

FakePlayer 1
Fjcon 9

√

Geinimi 23
GoldDream 21

Kmin 48
Pjapps 17
Pushme 1

RogueLemon 2
√

RuPaidMarket 3
TigerBot 3

√

YZHC 8
Total 206 8

respect to source methods, we use a comprehensive list of
entry points and callback methods that do not involve user
interaction. If we find such a path, we then mark the app as
a medium-risk and save the detected call chain path in the
MySQL database.

In total, our system reports 2437 apps that exhibit back-
ground SMS sending behavior. Because there can be multi-
ple paths from source to sink methods in one app, the total
number of paths (3406) is larger than the number of apps.
Also, while it is possible to go through these 2437 apps one
by one, we find that we can still significantly reduce the
number of apps that need to be analyzed. In particular, in-
stead of analyzing each app, we opt to analyze each unique
path our system detects (as such paths represent the ac-
tual behavior of concern). Moreover, as the same path can
exist in multiple apps, the number of unique paths is less
than the number of apps. For example, the path from the
run() method of the om.GoldDream.zj.zjServie$1 class to
the sendTextMessage(...) method exists in 5 different apps,
all of which belong to the GoldDream malware family. In total,
of these 3406 paths, only 1223 paths are unique.

Subsequently, we analyzed these 1223 distinct paths indi-
vidually. Our experience indicates that this analysis can be
done by one person under two days. When a potentially-
malicious path was identified by this analyst, we forwarded
it to another for confirmation. Ultimately, we discovered 94
distinct malicious paths. We then marked all the related
apps corresponding to these malicious paths as malware.

Overall, we discovered 206 infected apps among 2437 medium-
risk apps, representing 20 families, including 8 zero-day mal-
ware families. We tabulate these results in Table 4. The
discovery of new samples from known malware families in-
dicate that some of these families are still actively spreading
in the wild. For example, the Pjapps malware was first dis-
covered in February 2011. More than half a year later, it is
still present in some alternative marketplaces.

Table 5: Malware discovery in second-order risk

analysis

Family # Samples Zero-day?
DroidKungFu1 [26] 3
DroidKungFu2 [25] 1
DroidKungFu3 [24] 213
DroidKungFu4 [16] 96

√

DroidKungFuSapp [18] 2
√

AnserverBot [21] 184
√

Total 499 3

Of these new discoveries, a few merit special mention. For
example, the AnserverBot sample we detected is actually its
child app, which contains the background SMS sending be-
havior. The DroidStop malware performs its activities at an
interesting point in its host app’s lifecycle. When the app
is no longer visible to the user, DroidStop sends a SMS to
a particular premium-rate number (2623588217) inside the
USA. This last malware was once published on the official
Android Market, but has now been removed by Google.

3.2 Second-Order Analysis
In our second-order risk analysis, we combine various in-

formation to locate apps that feature encrypted native code
and unsafe Dalvik code loading behaviors.

Encrypted native code execution As discussed be-
fore, we combine three pieces of information together to de-
tect apps that execute encrypted native binaries in the back-
ground. In order to collect this information, for each app,
we first get all the paths from the app’s entry points to the
methods that represent the constituent behaviors that make
up this greater pattern. More specifically, these methods in-
clude decryption methods (from the javax.rypto package),
methods that access the assets or resources directories, and
the Runtime.exe(...) method. The paths we detect to each
method of interest are saved into a MySQL database. We
then examine the entry point for each path in a given app; if
all three types of path exist that start from the same entry
point, we mark the app as potentially risky.

We found that 5495 apps contain all three types of path.
However, only 328 of those apps contain all three paths orig-
inating from the same entry method. We then analyzed
these 328 apps and discovered 315 malware samples from
5 different malware families, including 2 zero day malware
families; the remaining 13 apps are benign. In Table 5, we
show the malware reported by our second-order risk analy-
sis of encrypted native code execution (with the exception
of AnserverBot which was detected due to unsafe Dalvik
code loading). The results are encouraging as all known
DroidKungFu variants are successfully detected. By captur-
ing the intrinsic characteristics of the DroidKungFu malware,
we expect that RiskRanker will be able to capture new
DroidKungFu variants in the future.

Unsafe Dalvik code loading Besides the detection of
encrypted native code execution, our second-order analysis
also captures the unsafe practice of dynamic Dalvik code
loading. In combination with our child app detection logic,
we can effectively identify those apps that could load new
code at runtime. In our prototype, we first recognize all apps
that are capable of dynamic Dalvik code loading (e.g., by
looking for references to the DexClassLoader class’ methods).

Table 6: The missed malware samples

Malware Name # Malware Name #
ADRD 1 Gone60 2

BaseBridge 2 jSMSHider 1
DroidDream 1 BatteryDoctor 1

DroidDreamLight 2 TapSnake 1
FakeNetflix 1 - -

Among the resulting apps, we further detect the presence of
a child app. If such an app is found, we immediately flag its
parent for further analysis.

In total, we found that 4257 apps feature dynamic code
loading capability and 1655 apps contain a child package.
Combining these two categories, we find 492 apps in com-
mon. After analyzing these apps, we found that some of the
uses of DexClassLoader originate from embedded libraries,
rather than the app itself. For example, one particular li-
brary from iBuildApp [15] uses DexClassLoader methods, and
is contained in 135 apps. Furthermore, one ad library [4] and
the Adobe AIR [3] platform extensively use the DexClassLoader
feature. Accordingly, we choose to white-list these libraries
to reduce the number of apps that need to be analyzed.

After white-listing these libraries, we found one particular
app that dynamically loads its child package anserverb.db
from the assets directory. Upon analyzing this app, we
found it is actually zero-day malware – which we named
AnserverBot – and accordingly released a security alert about
it. It turns out that this malware is one of the most so-
phisticated pieces of Android malware we have discovered
so far. Specifically, it aggressively employs several sophis-
ticated techniques to evade detection and analysis, includ-
ing Plankton-like [27] dynamic code loading, Java reflection-
based method invocation, heavy use of code obfuscation and
data encryption, self-verification of signatures, as well as
run-time detection and removal of installed mobile security
software. The detailed analysis can be find in our report [5].
In total, we detected 184 AnserverBot samples.

3.3 False Negative Measurement
Our results so far demonstrate the effectiveness of RiskRanker

in uncovering new (zero-day) Android malware. In the fol-
lowing, we further measure the false negatives of our system.
To this end, we download malware samples from the public
contagio dump repository [10] and use them as the ground
truth. Note that the malware samples in this repository are
contributed by volunteers and our study shows that there
are some duplicates. After removing these duplicates, there
are 133 distinct samples from 31 different families.

Our system reports 121 of the 133 samples we collected
from the contagio repository. The remaining 12 malware
samples are summarized in Table 6. Upon analysis, we
discover that the samples that our system fails to detect
all fall outside the scope of our current analysis in one of
three ways. First off, some malware families engage in mali-
cious behaviors that our system does not attempt to detect.
For example, FakeNetflix impersonates a Netflix app in a
bid to collect the user’s account and password information;
such social-engineering attacks are very difficult for an auto-
mated system to distinguish from legitimate app function-
ality. BatteryDotor, Gone60, and TapSnake are spyware that
harvest personal information and human judgment is still

necessary to distinguish them from many other legitimate
apps in the marketplace that may collect user information.
The ADRD sample engages in click fraud by retrieving a list of
ad URLs from a remote server and then visiting them in the
background. Second, the missed samples do not share the
same malicious payload as others in the same family. For
example, our system missed DroidDreamLight samples that
lack the background SMS sending behavior seen in other
samples in the same family. Also, the missed BaseBridge
samples do not contain the root exploits common to that
family. Third, there are some samples that are, in a sense,
guilty by association. For example, jSMSHider installs a ma-
licious child app, while the missed DroidDream “sample” is
in fact the malware’s innocuous child app. Neither of these
samples themselves engage in actual malicious behavior, but
the apps associated with them do.

3.4 Malware Distribution Breakdown
We further analyze the distribution of the malware we

detected among the Android markets we studied. Sadly,
we find that malware can be detected in all of the mar-
kets we examined, including the official Android Market. In
the worst case, 220 samples were detected in a single al-
ternative market, representing 3.06% of all apps collected
from that market. Four alternative markets contain more
than 90 malware samples apiece. Specifically, if we sum up
the malware samples from these four alternative markets,
they together account for 85.98% of all malware samples we
discovered. We stress that while no sizable market can be
expected to be perfectly secure, some markets clearly do bet-
ter than others at policing their contents. For example, in
the official Android Market, only 2 apps out of 52, 208 were
malicious. Although we do not know the exact reason why
Google’s market is so much cleaner than some of the others,
we believe that it is likely due to the adoption of Google
Bouncer [6] service. Unfortunately, there is limited public
information on how Bouncer works.

4. DISCUSSION
While our prototype demonstrates promising results, it

is still a proof-of-concept system, and therefore has several
important limitations. In this section, we will examine these
limitations and suggest possible areas of improvement.

To begin with, our root-exploit detection scheme depends
on signatures, which obviously implies that it can detect only
known exploits and may also miss encrypted or obfuscated
exploits. Our second-order risk analysis alleviates the situ-
ation and at present appears to work very well. However,
if such techniques start to hinder the deployment of mal-
ware in app markets, malware authors might respond by
attacking some of the assumptions that make this method
work so well. For example, our prototype only considers the
javax.rypto libraries for convenient encryption detection;
nothing prevents an attacker from implementing their own
in-app encryption or decryption scheme. Similarly, instead
of packaging their native code in the assets or resource direc-
tories, such code could be included as large constant arrays
in the Dalvik binary itself. While it is possible to counter
all of these strategies, it is obvious that the situation can
and likely will grow more complicated as malware matures
on the platform.

Similarly, our dynamic Dalvik code execution scheme has
limitations. Child apps are not the only sources of Dalvik

code; such code can be downloaded from the Internet or
stored as raw data contained in a constant array, for ex-
ample. Nothing prevents an attacker from encrypting or
otherwise obfuscating a child app, either, in much the same
way that native binaries are hidden today. In the long term,
these concerns may best be addressed by incorporating some
dynamic analysis techniques, such as fuzzing, into systems
like RiskRanker. Also, while static analysis may determine
that dynamic code loading is taking place, it may not be
very effective at identifying precisely what dynamic code is
being loaded.

Our medium-risk modules are similarly imperfect. We
test for only four distinct behaviors, for example, and our
dataflow analyses do not account for code lying outside the
execution path very well. While these are general concerns
that can be remedied by applying more sophisticated tech-
niques drawn from the existing program analysis literature,
likely at the cost of additional processor time, we do recog-
nize one interesting practical matter that came out of our
experiences collecting the data for this work. A fraction
of Android apps are obfuscated to frustrate casual analysis.
When we identified 1223 unique paths using our medium-
risk analyses, 59 of those paths had their class names ob-
fuscated. Obfuscation of this sort leads to two challenges.
First, slightly different samples of the same app can have
wildly different reported code paths that in fact represent
the same behavior, because obfuscation is generally very
sensitive to small changes in the input app. For example,
the entry function om.pakage.Class.run() may become a.-
b..run() in one sample, yet a..d.run() in another. Sec-
ondly, known-safe app paths cannot be white-listed to save
analyst effort over time; a known-safe ad library contained
in a large number of apps, for example, may still consume
analyst-hours of effort when obfuscated apps that contain
it are uploaded to a market. Obfuscation is actually rec-
ommended by Google [19], so this problem is here to stay.
The same issues apply to the second-order encrypted native
binary execution analysis, as well. To resolve these issues,
it would be better to report paths based on their semantic
meaning – what they actually do – rather than simply their
“names.” Unfortunately, obfuscation can also rearrange (in
limited ways) the opcodes along an execution path, so this
is not a trivial problem to solve. We leave such semantic
path description techniques to future work.

Finally, it is important to note that the search for malware
is not always black and white. Many risky apps threaten
user security and privacy, but are not necessarily malware.
Sometimes, these apps are simply written in a potentially
dangerous way, but are published by a reputable company;
for example, Adobe AIR uses dynamic code execution, which
a more aggressive system would flag. Other apps take pains
to justify potentially dangerous actions to the user. For
example, in the Chinese app markets, some apps display a
user agreement when they are first launched, stating that
the app will use a premium-rate SMS number to bill the
user on some recurring basis. Some of these apps add this
functionality to repackaged versions of existing apps, and so
may be considered a soft kind of malware. It is impossible
to determine that such apps are in fact malware, however,
when they are considered in isolation. We also see many
instances of classical gray-area malware in the app markets,
particularly spyware. Many apps collect more information
than they need to function and blithely send it to external

parties – it is simply very easy to get such information on
mobile platforms. However, it is an open question on where
the line should be drawn on such information leaks, and
how much apps need to disclose to the user about how their
information is being used.

5. RELATEDWORK
Recently, smartphone security has been an area of active

research. Many researchers have identified areas of concern
and proposed solutions to problems on smartphone operat-
ing systems. For example, TaintDroid [38] and PiOS [37]
were developed to identify information leaks on smartphone
platforms, where TaintDroid used dynamic analysis tech-
niques on Android and PiOS applied program slicing to iOS
binaries. A raft of follow-up work then sought to address
these information leaks by altering the frameworks involved:
Apex [48], MockDroid [32], TISSA [57] and AppFence [46] all
offer extensions to the Android framework to provide finer-
grained control over an app’s access to potentially sensitive
resources. Most of these efforts are aimed at addressing this
problem on the user’s phone; RiskRanker, on the other hand,
attempts to identify such risky behaviors at the app market.
Of the systems listed previously, RiskRanker has the most
in common with PiOS, in that both employ program slicing
to better understand app behavior. However, PiOS targets
iOS binaries for information leaks while RiskRanker looks
for potential security risks (including platform-level root ex-
ploits and background SMS message-sending) for zero-day
Android malware detection.

Another line of research deals with the confused-deputy
problem [45] on Android, where inter-process communica-
tion channels can inadvertently expose privileged function-
ality to unprivileged callers. ComDroid [34] and Wood-
pecker [44] both employ static analysis techniques to de-
tect such attacks in third-party and firmware apps, respec-
tively. To deal with this problem, QUIRE [36] and Felt
et al. [42] offer extensions to the Android IPC model that
allow the ultimate implementor of a privileged feature to
check the IPC call chain to ensure unprivileged apps can
not launch confused-deputy attacks unnoticed. Similarly,
Bugiel et al. [33] use a run-time monitor to regulate com-
munications between apps. RiskRanker at present does not
check for confused-deputy attacks that target the IPC layer,
but its design was informed by our experiences developing
the Woodpecker system. We consider these efforts to be
complementary to RiskRanker, because one of the lessons
learned from these systems is that confused-deputy attacks
do not target well-understood, standardized framework com-
ponents. For example, Schrittwieser et al. [51] find that re-
cent Internet-based messaging apps contain security flaws
that can allow attackers to hijack accounts, spoof sender-
IDs, or even enumerate subscribers. RiskRanker could be
extended to identify such vulnerabilities in a similar fashion
to ComDroid or Woodpecker, but it would be more diffi-
cult to automate the discovery of malware that attempts to
exploit such vulnerabilities.

Other systems attempt to use or extend the Android per-
mission system to defend against malware. For example,
Kirin [40] blocks the installation of apps that request partic-
ularly dangerous combinations of permissions, while Saint [49]
lets app developers specify permission policies that constrain
permission assignment at install-time and use at run-time.
RiskRanker conceptually has some similarities with these

systems, in that its second-order analyses aim to identify
patterns of seemingly innocent API uses that can be indica-
tors of malware. However, Kirin is concerned about the end
user and Saint the app developer, while RiskRanker targets
app markets themselves. Another interesting system in this
category is Stowaway [41], which aims to identify instances
of app over-privilege, where an app requests more permis-
sions than it uses. Such over-privilege itself could be used
as an input to RiskRanker in the future.

Besides the above defenses, some work has been proposed
to apply common security techniques from the desktop to
mobile devices. For example, L4Android [47] and Cells [31]
apply virtualization techniques to the mobile space, allow-
ing for multiple virtual cellphones to be run on one device,
isolated from one another. Meanwhile, MoCFI [35] enforces
control-flow integrity in iOS apps without requiring access
to their source code or cooperation from their developers.
These approaches naturally complement RiskRanker by pro-
viding defense-in-depth, but again are designed to be de-
ployed on endpoint devices.

Some work has focused on malware and the overall mar-
ket health. Felt et al. [50] surveyed 46 malware samples
on three different smartphone platforms, discussing the in-
centives that motivated their creation and possible defenses
against them. However, this work did not discuss how to dis-
cover this malware to begin with. Enck et al. [39] studied the
1100 top free apps from the official Android Market to un-
derstand their general security and privacy characteristics.
Our work has a much stronger emphasis on malware detec-
tion than privacy leak detection. MalGenome [55] aims to
systematically characterize existing Android malware from
various aspects, including their installation methods, activa-
tion mechanisms as well as the nature of carried malicious
payloads. Note that it did not focus on the methodology
for discovering Android malware. However, the insights be-
hind it is instrumental for RiskRanker to look for certain
malicious patterns. Finally, we have developed two related
systems in the past. The first, DroidRanger [56], aims to
mainly detect known malware in the existing app markets.
It requires malware samples to extract behavioral signatures
for detection. RiskRanker, on the other hand, is designed
to actively detect zero-day malware without relying on mal-
ware specimens. Also, while our second-order risk analy-
sis shares a similar spirit with the two basic heuristics in
DroidRanger, their differences are fundamentally rooted in
their distinct goals: DroidRanger was designed to measure
the overall health of an app market, whereas RiskRanker
is designed to uncover more sophisticated zero-day malware
by assessing and ranking potential risks in each app. The
second related system, DroidMOSS [54], is designed to de-
tect repackaged apps using fuzzy hashing. RiskRanker does
not have any notion of whether an app has been repackaged,
although many malware samples are bundled with a repack-
aged version of a legitimate app; likewise, DroidMOSS does
not aim to detect malware. AdRisk is another recent sys-
tem [43] that is proposed to systematically identify potential
risks posed by existing in-app ad libraries. Although the ad
libraries identified by AdRisk do not seem to have mali-
cious intent, they contain potential risks ranging from leak-
ing user’s private information to executing untrusted code
from the Internet. This potential to do harm places such
libraries in a gray area.

6. CONCLUSION
In this paper, we present a proactive scheme to scalably

and accurately sift through a large number of apps in exist-
ing Android markets to spot zero-day malware. Specifically,
our scheme assesses the potential security risks from un-
trusted apps by analyzing whether dangerous behaviors are
exhibited by these apps (with two-order risk analysis). We
have implemented a prototype of RiskRanker and evaluate
it using 118, 318 apps from a variety of Android markets
to demonstrate its effectiveness and accuracy: among the
apps in the sample, our system successfully discovered 718
malware samples in 29 families, including 322 zero-day spec-
imens from 11 distinct families.

Acknowledgment

We would like to thank our shepherd, Patrick McDaniel, and
the anonymous reviewers for their insightful comments that
greatly helped improve the presentation of this paper. We
also want to thank Zhi Wang, Wu Zhou, Deepa Srinivasan,
Minh Q. Tran, Chiachih Wu and Lei Wu for numerous help-
ful discussions.

7. REFERENCES
[1] 260,000 Android users infected with malware. http://

www.infosecurity-magazine.com/view/16526/

260000-android-users-infected-with-malware/.

[2] adb trickery #2. http://c-skills.blogspot.com/
2011/01/adb-trickery-again.html.

[3] Adobe AIR 3. http://www.adobe.com/products/air.
html.

[4] AdTouch. http://www.adtouchnetwork.com/
adtouch/sdk/SDK.html.

[5] An Analysis of the AnserverBot Trojan. http://www.
csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_

Analysis.pdf.

[6] Android and Security. http://googlemobile.
blogspot.com/2012/02/android-and-security.html.

[7] Android Market Statistic. http://www.androlib.com/
appstats.aspx.

[8] android trickery. http://c-skills.blogspot.com/
2010/07/android-trickery.html.

[9] Asroot. http://milw0rm.com/sploits/android-
root-20090816.tar.gz.

[10] Contagio mobile malware mini dump. http://
contagiominidump.blogspot.com/.

[11] DexClassLoader. http://developer.android.com/
reference/dalvik/system/DexClassLoader.html.

[12] Droid2. http://c-skills.blogspot.com/2010/08/
droid2.html.

[13] Gartner Says Sales of Mobile Devices Grew 5.6
Percent in Third Quarter of 2011; Smartphone Sales
Increased 42 Percent. http://www.gartner.com/it/
page.jsp?id=1848514.

[14] GingerMaster: First Android Malware Utilizing a
Root Exploit on Android 2.3 (Gingerbread). http://
www.csc.ncsu.edu/faculty/jiang/GingerMaster/.

[15] iBuildApp. http://ibuildapp.com/.

[16] LeNa (Legacy Native) Teardown Lookout Mobile
Security. http://blog.mylookout.com/wp-content/
uploads/2011/10/LeNa-Legacy-Native-Teardown_

Lookout-Mobile-Security1.pdf.

http://www.infosecurity-magazine.com/view/16526/260000-android-users-infected-with-malware/
http://www.infosecurity-magazine.com/view/16526/260000-android-users-infected-with-malware/
http://www.infosecurity-magazine.com/view/16526/260000-android-users-infected-with-malware/
http://c-skills.blogspot.com/2011/01/adb-trickery-again.html
http://c-skills.blogspot.com/2011/01/adb-trickery-again.html
http://www.adobe.com/products/air.html
http://www.adobe.com/products/air.html
http://www.adtouchnetwork.com/adtouch/sdk/SDK.html
http://www.adtouchnetwork.com/adtouch/sdk/SDK.html
http://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_Analysis.pdf
http://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_Analysis.pdf
http://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_Analysis.pdf
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://www.androlib.com/appstats.aspx
http://www.androlib.com/appstats.aspx
http://c-skills.blogspot.com/2010/07/android-trickery.html
http://c-skills.blogspot.com/2010/07/android-trickery.html
http://milw0rm.com/sploits/android-root-20090816.tar.gz
http://milw0rm.com/sploits/android-root-20090816.tar.gz
http://contagiominidump.blog spot.com/
http://contagiominidump.blog spot.com/
http://developer.android.com/reference/dalvik/system/DexClassLoader.html
http://developer.android.com/reference/dalvik/system/DexClassLoader.html
http://c-skills.blogspot.com/2010/08/droid2.html
http://c-skills.blogspot.com/2010/08/droid2.html
http://www.gartner.com/it/page.jsp?id=1848514
http://www.gartner.com/it/page.jsp?id=1848514
http://www.csc.ncsu.edu/faculty/jiang/GingerMaster/
http://www.csc.ncsu.edu/faculty/jiang/GingerMaster/
http://ibuildapp.com/
http://blog.mylookout.com/wp-content/uploads/2011/10/LeNa-Legacy-Native-Teardown_Lookout-Mobile-Security1.pdf
http://blog.mylookout.com/wp-content/uploads/2011/10/LeNa-Legacy-Native-Teardown_Lookout-Mobile-Security1.pdf
http://blog.mylookout.com/wp-content/uploads/2011/10/LeNa-Legacy-Native-Teardown_Lookout-Mobile-Security1.pdf

[17] Manifest.permission group definitions. http://
developer.android.com/reference/android/

Manifest.permission_group.html.

[18] New DroidKungFu Variant – DroidKungFuSapp –
Emerges! http://www.csc.ncsu.edu/faculty/jiang/
DroidKungFuSapp/.

[19] ProGuard. http://developer.android.com/guide/
developing/tools/proguard.html.

[20] Revolutionary - zergRush local root 2.2/2.3. http://
forum.xda-developers.com/showthread.php?

t=1296916.

[21] Security Alert: AnserverBot, New Sophisticated
Android Bot Found in Alternative Android Markets.
http://www.csc.ncsu.edu/faculty/jiang/

AnserverBot/.

[22] Security Alert: Geinimi, Sophisticated New Android
Trojan Found in Wild. http://blog.mylookout.com/
2010/12/geinimi_trojan/.

[23] Security Alert: New Android Malware – DroidCoupon
– Found in Alternative Android Markets. http://www.
csc.ncsu.edu/faculty/jiang/DroidCoupon/.

[24] Security Alert: New DroidKungFu Variant – AGAIN!
– Found in Alternative Android Markets. http://www.
csc.ncsu.edu/faculty/jiang/DroidKungFu3/.

[25] Security Alert: New DroidKungFu Variants Found in
Alternative Chinese Android Markets. http://www.
csc.ncsu.edu/faculty/jiang/DroidKungFu2/.

[26] Security Alert: New Sophisticated Android Malware
DroidKungFu Found in Alternative Chinese App
Markets. http://www.csc.ncsu.edu/faculty/jiang/
DroidKungFu.html.

[27] Security Alert: New Stealthy Android Spyware –
Plankton – Found in Official Android Market. http://
www.csc.ncsu.edu/faculty/jiang/Plankton/.

[28] Smartphone shipments tripled since ’08. Dumb phones
are flat. http://tech.fortune.cnn.com/2011/11/01/
smartphone-shipments-tripled-since-08-dumb-

phones-are-flat/.

[29] yummy yummy, GingerBreak! http://c-skills.

blogspot.com/2011/04/yummy-yummy-gingerbreak.

html.

[30] Zimperlich sources. http://c-skills.blogspot.com/
2011/02/zimperlich-sources.html.

[31] Andrus, J., Dall, C., Van’t Hof, A., Laadan, O.,

and Nieh, J. Cells: A Virtual Mobile Smartphone
Architecture. In Proceedings of the 23rd ACM

Symposium on Operating Systems Principles (2011),
SOSP ’11.

[32] Beresford, A. R., Rice, A., Skehin, N., and

Sohan, R. MockDroid: Trading Privacy for
Application Functionality on Smartphones. In
Proceedings of the 12th International Workshop on

Mobile Computing System and Applications (2011),
HotMobile ’11.

[33] Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T.,

Sadeghi, A.-R., and Shastry, B. Towards Taming
Privilege-Escalation Attacks on Android. In
Proceedings of the 19th Annual Symposium on Network

and Distributed System Security (2012), NDSS ’12.

[34] Chin, E., Felt, A. P., Greenwood, K., and

Wagner, D. Analyzing Inter-Application
Communication in Android. In Proceedings of the 9th

Annual International Conference on Mobile Systems,

Applications, and Services (2011), MobiSys 2011.

[35] Davi, L., Dmitrienko, A., Egele, M., Fischer, T.,

Holz, T., Hund, R., Nurnberger, S., and

Sadeghi, A.-R. MoCFI: A Framework to Mitigate
Control-Flow Attacks on Smartphones. In Proceedings

of the 19th Annual Symposium on Network and

Distributed System Security (2012), NDSS ’12.

[36] Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A.,

and Wallach, D. S. QUIRE: Lightweight
Provenance for Smart Phone Operating Systems. In
Proceedings of the 20th USENIX Security Symposium

(2011), USENIX Security ’11.

[37] Egele, M., Kruegel, C., Kirda, E., and Vigna,

G. PiOS: Detecting Privacy Leaks in iOS
Applications. In Proceedings of the 18th Annual

Symposium on Network and Distributed System

Security (2011), NDSS ’11.

[38] Enck, W., Gilbert, P., Chun, B.-g., Cox, L. P.,

Jung, J., McDaniel, P., and Sheth, A. N.

TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones. In
Proceedings of the 9th USENIX Symposium on

Operating Systems Design and Implementation (2010),
USENIX OSDI ’10.

[39] Enck, W., Octeau, D., McDaniel, P., and

Chaudhuri, S. A Study of Android Application
Security. In Proceedings of the 20th USENIX Security

Symposium (2011), USENIX Security ’11.

[40] Enck, W., Ongtang, M., and McDaniel, P. On
Lightweight Mobile Phone Application Certification.
In Proceedings of the 16th ACM Conference on

Computer and Communications Security (2009), CCS
’09.

[41] Felt, A. P., Chin, E., Hanna, S., Song, D., and

Wagner, D. Android Permissions Demystified. In
Proceedings of the 18th ACM Conference on Computer

and Communications Security (2011), CCS ’11.

[42] Felt, A. P., Wang, H. J., Moshchuk, A., Hanna,

S., and Chin, E. Permission Re-Delegation: Attacks
and Defenses. In Proceedings of the 20th USENIX

Security Symposium (2011), USENIX Security ’11.

[43] Grace, M., Zhou, W., Jiang, X., and Sadeghi,

A.-R. Unsafe Exposure Analysis of Mobile In-App
Advertisements. In Proceedings of the 5th ACM

Conference on Security and Privacy in Wireless and

Mobile Networks (2012), ACM WiSec ’12.

[44] Grace, M., Zhou, Y., Wang, Z., and Jiang, X.

Systematic Detection of Capability Leaks in Stock
Android Smartphones. In Proceedings of the 19th

Annual Symposium on Network and Distributed

System Security (2012), NDSS ’12.

[45] Hardy, N. The Confused Deputy: (or why
capabilities might have been invented). ACM SIGOPS

Operating Systems Review 22 (October 1998).

[46] Hornyack, P., Han, S., Jung, J., Schechter, S.,

and Wetherall, D. These Aren’t the Droids You’re
Looking For: Retrofitting Android to Protect Data
from Imperious Applications. In Proceedings of the

18th ACM Conference on Computer and

Communications Security (2011), CCS ’11.

[47] Lange, M., Liebergeld, S., Lackorzynski, A.,

http://developer.android.com/reference/android/Manifest.permission_group.html
http://developer.android.com/reference/android/Manifest.permission_group.html
http://developer.android.com/reference/android/Manifest.permission_group.html
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFuSapp/
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFuSapp/
http://developer.android.com/guide/developing/tools/proguard.html
http://developer.android.com/guide/developing/tools/proguard.html
http://forum.xda-developers.com/showthread.php?t=1296916
http://forum.xda-developers.com/showthread.php?t=1296916
http://forum.xda-developers.com/showthread.php?t=1296916
http://www.csc.ncsu.edu/faculty/jiang/AnserverBot/
http://www.csc.ncsu.edu/faculty/jiang/AnserverBot/
http://blog.mylookout.com/2010/12/geinimi_trojan/
http://blog.mylookout.com/2010/12/geinimi_trojan/
http://www.csc.ncsu.edu/faculty/jiang/DroidCoupon/
http://www.csc.ncsu.edu/faculty/jiang/DroidCoupon/
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu3/
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu3/
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu2/
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu2/
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html
http://www.csc.ncsu.edu/faculty/jiang/Plankton/
http://www.csc.ncsu.edu/faculty/jiang/Plankton/
http://tech.fortune.cnn.com/2011/11/01/smartphone-shipments-tripled-since-08-dumb-phones-are-flat/
http://tech.fortune.cnn.com/2011/11/01/smartphone-shipments-tripled-since-08-dumb-phones-are-flat/
http://tech.fortune.cnn.com/2011/11/01/smartphone-shipments-tripled-since-08-dumb-phones-are-flat/
http://c-skills.blogspot.com/2011/04/yummy-yummy-gingerbreak.html
http://c-skills.blogspot.com/2011/04/yummy-yummy-gingerbreak.html
http://c-skills.blogspot.com/2011/04/yummy-yummy-gingerbreak.html
http://c-skills.blogspot.com/2011/02/zimperlich-sources.html
http://c-skills.blogspot.com/2011/02/zimperlich-sources.html

Warg, A., and Peter, M. L4Android: A Generic
Operating System Framework for Secure
Smartphones. In Proceedings of the 1st Workshop on

Security and Privacy in Smartphones and Mobile

Devices (2011), CCS-SPSM ’11.

[48] Nauman, M., Khan, S., and Zhang, X. Apex:
Extending Android Permission Model and
Enforcement with User-Defined Runtime Constraints.
In Proceedings of the 5th ACM Symposium on

Information, Computer and Communications Security

(2010), ASIACCS ’10.

[49] Ongtang, M., McLaughlin, S., Enck, W., and

McDaniel, P. Semantically Rich Application-Centric
Security in Android. In Proceedings of the 2009

Annual Computer Security Applications Conference

(2009), ACSAC ’09.

[50] Porter Felt, A., Finifter, M., Chin, E., Hanna,

S., and Wagner, D. A Survey of Mobile Malware In
The Wild. In Proceedings of the 1st Workshop on

Security and Privacy in Smartphones and Mobile

Devices (2011), CCS-SPSM ’11.

[51] Schrittwieser, S., Fruhwirt, P., Kieseberg, P.,

Leithner, M., Mulazzani, M., Huber, M., and

Weippl, E. Guess Who’s Texting You? Evaluating
the Security of Smartphone Messaging Applications.
In Proceedings of the 19th Annual Symposium on

Network and Distributed System Security (2012),
NDSS ’12.

[52] Wang, H. J., Guo, C., Simon, D. R., and

Zugenmaier, A. Shield: Vulnerability-Driven
Network Filters for Preventing Known Vulnerability
Exploits. In Proceedings of the ACM SIGCOMM 2004

Conference (2004), ACM SIGCOMM ’04.

[53] Wang, Z., Jiang, X., Cui, W., Wang, X., and

Grace, M. ReFormat: Automatic Reverse
Engineering of Encrypted Messages. In Proceedings of

the 14th European Symposium on Research in

Computer Security (September 2009), ESORICS ’09.

[54] Zhou, W., Zhou, Y., Jiang, X., and Ning, P.

DroidMOSS: Detecting Repackaged Smartphone
Applications in Third-Party Android Marketplaces. In
Proceedings of the 2nd ACM Conference on Data and

Application Security and Privacy (2012), CODASPY
’12.

[55] Zhou, Y., and Jiang, X. Dissecting Android
Malware: Characterization and Evolution. In
Proceedings of the 33rd IEEE Symposium on Security

and Privacy (2012), IEEE Oakland ’12.

[56] Zhou, Y., Wang, Z., Zhou, W., and Jiang, X.

Hey, You, Get off of My Market: Detecting Malicious
Apps in Official and Alternative Android Markets. In
Proceedings of the 19th Annual Symposium on Network

and Distributed System Security (2012), NDSS ’12.

[57] Zhou, Y., Zhang, X., Jiang, X., and Freeh,

V. W. Taming Information-Stealing Smartphone
Applications (on Android). In Proceedings of the 4th

International Conference on Trust and Trustworthy

Computing (2011), TRUST ’11.

	1 Introduction
	2 Design
	2.1 First-Order Analysis
	2.2 Second-Order Analysis

	3 Prototyping & Evaluation
	3.1 First-Order Analysis
	3.2 Second-Order Analysis
	3.3 False Negative Measurement
	3.4 Malware Distribution Breakdown

	4 Discussion
	5 Related Work
	6 Conclusion
	7 References

