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ABSTRACT
Stack canary is the most widely deployed defense technique against
stack buffer overflow attacks. However, since its proposition, the
design of stack canary has very few improvements during the past
20 years, making it vulnerable to new and sophisticated attacks. For
example, the ARM64 Linux kernel is still adopting the same design
with StackGuard [27], using one global canary for the whole kernel.
The x86_64 Linux kernel leverages a better design by using a per-
task canary for different threads. Unfortunately, both of them are
vulnerable to kernel memory leaks. Using the memory leak bugs or
hardware side-channel attacks, e.g., Meltdown or Spectre, attackers
can easily peek the kernel stack canary value, thus bypassing the
protection.

To address this issue, we proposed a fine-grained design of the
kernel stack canary named PESC, standing for Per-System-Call
Canary, which changes the kernel canary value on the system call
basis. With PESC, attackers cannot accumulate any knowledge of
prior canary across multiple system calls. In other words, PESC
is resilient to memory leaks. Our key observation is that before
serving a system call, the kernel stack is empty and there are no
residual canary values on the stack. As a result, we can directly
change the canary value on system call entry without the burden
of tracking and updating old canary values on the kernel stack.

Moreover, to balance the performance as well as the security, we
proposed two PESC designs: one relies on the performance monitor
counter register, termed as PESC-PMC, while the other one uses
the kernel random number generator, denoted as PESC-RNG. We
implemented both PESC-PMC and PESC-RNG on the real-world
hardware, using HiKey960 board for ARM64 and Intel i7-7700 for
x86_64. The synthetic benchmark and SPEC CPU2006 experimental
results show that the performance overhead introduced by PESC-
PMC and PESC-RNG on the whole system is less than 1%.

CCS CONCEPTS
• Security and privacy → Operating systems security.

KEYWORDS
kernel, buffer overflow, stack canary, system call

Wenbo Shen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7107-0/20/03. . . $15.00
https://doi.org/10.1145/3374664.3375734

ACM Reference Format:
Jiadong Sun, Xia Zhou, Wenbo Shen, Yajin Zhou, Kui Ren. 2020. PESC: A
Per System-Call Stack Canary Design for Linux Kernel. In Proceedings of
the Tenth ACM Conference on Data and Application Security and Privacy
(CODASPY ’20), March 16–18, 2020, New Orleans, LA, USA. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3374664.3375734

1 INTRODUCTION
Memory corruption bugs are one of the oldest computer security
problems [41]. These bugs give the attacker opportunities to inject
new code, change the control flow, or tamper with the data. Among
all memory corruption bugs, buffer overflow is the most common
one. The first computer worm Morris worm was using a buffer
overflow bug to escalate the privilege on computer systems in
1988 [16]. Due to the stack memory layout, the buffer overflow on
the stack enables the attacker to tamper with the security-critical
variable, i.e., the return address, stored on the stack. This allows
the attacker to subvert the control flow [37]. To defend against the
stack buffer overflow, Cowan et al. proposed StackGuard [27] in
1998, which utilizes the compiler to insert a canary word (a.k.a.
stack cookie) between the allocated buffer and the return address.
By doing so, any overflow from the buffer to the return address will
be detected by checking the canary value when a function returns.
Since then, the canary based protection has been widely adopted
and deployed on most of the computer systems. It is considered
as one of the most commonly used techniques against stack buffer
overflow attacks.

However, even after more than 20 years, the evolution of canary
based protection is lagging far behind. Until the Linux kernel v4.19,
it still uses a global universal canary (termed as global canary) for
the ARM64 architecture, which is the same with the original design
proposed in 1998. In contrast, the attacking techniques have become
much more sophisticated than the ones in 20 years ago, with new
types of memory leaks [23] and hardware bugs [33]. Better than
ARM64 kernel, x86_64 Linux kernel adopts a fine-grained canary
design by assigning different canaries for each thread when forking
(termed as per-task canary).

Sadly, both global canary and the per-task canary designs are
vulnerable to memory leaks. For example, in the global canary
design, the canary is assigned to a random value at kernel boot-up
and never changes. All processes and threads from user space or
kernel space share the same canary. As a result, one stack leak
allows the attacker to learn the canary values for all stacks of
all threads on Linux. Even for per-task canary, once the value is
assigned to a thread, it never changes, allowing the attacker to
exploit kernel stack leak vulnerabilities or side-channel attacks to
probe the per-task canary and infer the canary values.

Unfortunately, such information leak vulnerabilities are common
nowadays. For example, the incorrect check of /proc/pid/stack al-
lows the attacker to leak kernel stack content, including the canary
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value on the stack content [5, 46]. The uninitialized memory in
KVM leaks the stack memory in x86 Linux kernel [12]. Security
researchers have demonstrated more practical attacks against the
kernel stack canary via memory leaks in 2018 [3] and INFILTRATE
Security Conference 2019 [6]. Besides these software vulnerabili-
ties, the recent infamous Meltdown [33] or Spectre [32] and their
numerous variants, allow attackers to infer the kernel canary val-
ues by probing the kernel canary address, without triggering any
kernel software bugs.

With the leaked canary value, the kernel stack overflow attack
will roll back to the old days. The attacker can easily craft a special
payload containing the overflow payload and the correct kernel ca-
nary values, therefore bypasses all canary checks and launches the
buffer-overflow attack successfully. On one side, the stack overflow
vulnerabilities are still very common. Since 2014, Google project
zero team has reported more than 40 stack overflow vulnerabil-
ities [13], including mainstream operating system kernels, such
as Linux kernel, iOS kernel, and Windows kernel. As a result, the
existence of the stack overflow, and information leak vulnerabili-
ties make it easy for attackers to bypass the widely deployed stack
canary based defense. Due to this reason, there is a pressing need
to improve its design and implementation.

To this end, in this paper, we proposed a memory leak resilient
kernel stack canary design, named as PESC. PESC represents Per-
Syscall Canary, in which a new random stack canary will be gen-
erated for each system call. Compared with the global canary and
per-task canary, PESC has two main advantages. First, by changing
the canary value on every system call entry, PESC invalids the
leaked old stack canary, so that attackers cannot accumulate any
knowledge of prior canary across system calls. Second, as the stack
canary will be generated on the fly when the attacker is trying to
trigger the stack overflow via a system call, he or she has no way
to obtain the new stack canary value beforehand, even though the
kernel contains memory leak vulnerabilities or Meltdown/Spectre
related hardware problems. In other words, under PESC, attackers
cannot reuse leaked canaries, nor can they trigger vulnerabilities
to leak canaries beforehand.

Even though the basic idea of generating a new stack canary for
each system call is conceptually simple, PESC still needs to resolve
two technical challenges. First, it is hard to choose the critical code
location to change the kernel stack canary during a system call. In
kernel, when calling a function with point-to address writes (using
arrays or pointers), the compiler will automatically generate code
to push stack canary at function prologue and check it at function
epilogue [9]. We cannot check the canary here as the old canary
is already on the kernel stack. Changing canary value will lead to
stack canary check failure. In fact, the canary value can only be
changed when no canary value has been pushed to stack yet. To
resolve this problem, we propose to change the canary value at the
kernel_entry point, where the kernel stack is empty.

Second, we need to balance the performance as well as the ran-
domness of the newly generated canary. PESC requires to generate
a new canary with enough randomness at each system call. consid-
ering that system calls happen frequently, the system call dispatcher
is carefully designed to be short and efficient, usually less than 100
instructions. However, generating a random number in the ker-
nel usually involves multiple functions, with hundreds of lines of

code. Therefore, invoking the heavy random number generation
functions at the system call dispatcher will introduce certain per-
formance overhead. To improve the performance, we proposed two
PESC designs: PESC-PMC and PESC-RNG. PESC-PMC relies on
the Performance Monitor Counter to generate the new canary,
which makes it a lightweight design, adding only a couple of in-
structions to the kernel entry code. PESC-RNG relies on kernel
Random Number Generator to produce the new canary. It adds
certain performance overhead to every system call but has a fully
randomized canary. Our evaluation shows that for both PESC-PMC
and PESC-RNG implementations, the performance overhead to the
whole system is less than 1%.

The contributions of this paper are in three-fold:
• We proposed a more fine-grained kernel stack canary design
named PESC (PEr-System call Canary), which changes the
kernel stack canary on the system call basis, making it im-
possible for the attacker to accumulate canary knowledge
between system calls.

• To balance security and performance, we proposed the per-
formance counter register based design termed as PESC-
PMC and the kernel random number generator based design
denoted as PESC-RNG. We further implemented both de-
signs for ARM64 and x86_64 Linux kernel on real-world
hardware.

• We evaluated the implemented designs for both ARM64 and
x86_64 Linux kernel. The Android synthetic benchmark ex-
periments show that the average performance overhead of
PESC-PMC and PESC-RNG are 0.27% and 0.40%, respectively.
For x86_64 implementation, the performance overhead of
SPEC CPU2006 experiments are 0.09% and 0.15%.

2 BACKGROUND
In this section, we will introduce the necessary background knowl-
edge, including buffer overflow, kernel stack canary, Linux kernel
system call handling and the performance monitor counter.

2.1 Buffer overflow and stack canary
Buffer overflow is a common type of memory corruption bugs.
The root cause is missing boundary check. A stack buffer overflow
usually happens when the buffer is allocated on stack and allows
to write without any size checking. As a result, the buffer write can
go beyond the boundary of the allocated buffer, causing the stack
buffer overflow. For example, the attacker can exploit the stack
buffer overflow to overwrite the return address with the address of
shellcode, or gadget addresses which are used to perform return-
oriented programming attacks [18].

To defend against stack buffer overflow, a special value named
stack canary (a.k.a, stack cookies) has been used as "a canary in a
coal mine", to warn any stack buffer overflow. More specifically, the
stack canary is a value that is inserted between the buffer and the
return address, so that the overflow to the return address has to go
through the canary. As a result, the canary value will be changed,
and the overflow can be detected by comparing the canary values
when the function returns.

The stack canary design has been widely deployed and is the
most widely used stack buffer overflow defense technique. However,
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1 canary_test:
2 ......
3 adrp x19, ffffff800907d000
4 add x19, x19, #0x6c8
5 ldr x6, [x19]
6 str x6, [x29,#104]
7 ... function body ...
8 ldr x1, [x29,#104]
9 ldr x0, [x19]

10 eor x0, x1, x0
11 cbnz x0, ffffff800860d7dc
12 ......
13 bl ffffff80080b1d90 <__stack_chk_fail>

Figure 1: Compiler inserted canary logic of ARM64.

it is vulnerable to memory leaks. Once the stack canary gets leaked,
the attacker can bypass the stack canary checking easily.

2.2 Current status of kernel canary
The Linux kernel v4.19 (released in October 2018) adopts two canary
designs to protect kernel stacks: global canary for ARM64 and per-
task canary for x86_64.

2.2.1 Global Canary. ARM64 (a.k.a., AArch64) Linux kernel v4.19
uses one single global canary variable __stack_chk_guard for kernel
stacks of all processes.

Canary initialize: ARM64 Linux kernel initializes the global ca-
nary during kernel boot-up. The first kernel function start_kernel

will call the function boot_init_stack_canary to assign a pseudo-
random value to __stack_chk_guard. It is worth noting that after the
initialization, the value of the global canary __stack_chk_guard will
never change until kernel reboots. In other words, the same canary
value will be used for all processes, all the time. As a result, if the
kernel canary is leaked from one process, the attacker is able to
know the canary used for all processes and launch further attacks.

Canary use: The ARM64 compiler will insert the canary logic
automatically during compiling. For example, when the kernel
config CONFIG_STACKPROTECTOR_STRONG is enabled, for a function that
uses register local variables, local variable’s address or array as
the right-hand side of an assignment, the compiler will add the
canary-push logic at function prologue and canary-check logic at
the function epilogue automatically [20].

Figure 1 shows the inserted canary-push and canary-check in-
structions for ARM64 architecture. For canary-push logic, Line 3-4
will load __stack_chk_guard’s address, which is 0xffffff800907d6c8,
to register x19, and then Line 5 will load the canary value to x6 and
Line 6 will push canary to the stack.

When the function returns, Line 8 will load the saved canary
value from the stack, while Line 9 will load the original canary value
from the global variable __stack_chk_guard. Line 10-11 will com-
pare the stack canary value with the original canary value. If they
do not match, which means the stack is corrupted, the execution
will jump to Line 13, which calls the function __stack_chk_fail to
crash the kernel.

2.2.2 Per-task Canary. Different with ARM64’s global canary de-
sign, the x86_64 Linux kernel is using per-task canary design, in
which each process has its own stack canary.

1 canary_test:
2 ......
3 mov %gs:0x28,%rax
4 mov %rax,0x40(%rsp)
5 ... function body ...
6 mov 0x40(%rsp),%rax
7 xor %gs:0x28,%rax
8 jne ffffffff815df1cf
9 add $0x48,%rsp

10 retq
11 callq ffffffff810611b0 <__stack_chk_fail>
12 ......

Figure 2: Compiler inserted canary logic of x86_64.

Canary initialize: In per-task canary, each process will main-
tain a stack_canary variable in its process control block task_struct.
When creating a new process, the dup_task_struct function will as-
sign a pseudo-random number to stack_canary of the newly created
process.

Canary use: Similar to the ARM64 compiler, the x86_64 com-
piler will also insert the canary logic into the generated binaries au-
tomatically. However, rather than relying on the global canary value,
the inserted x86_64 canary logic uses the canary that belongs to
current process. In x86_64, other than task_struct->stack_canary,
a second canary copy is saved to the stack_canary field of a per-cpu
data structure, called irq_stack_union. During process switching,
the per-task canary task_struct->stack_canary of the switch-in
processwill be copied to the CPU’s irq_stack_union->stack_canary,
which will be used for the subsequent reads, rather than the global
canary value __stack_chk_guard used in ARM64.

Figure 2 shows the inserted canary logic in a Linux kernel func-
tion of x86_64 architecture. The per-task canary irq_stack_union is
saved in the thread-local-storage structure, pointed by the register
gs, with an offset of 0x28. Therefore, Line 3-4 will load per-task
canary value from irq_stack_union->stack_canary to register rax,
and put its value to stack for stack protection. At function return,
Line 6 will read the stack canary value from the stack, while Line
7 will load the original canary value from thread-local-storage
structure irq_stack_union->stack_canary again. Line 8 will com-
pare these two canary values and jump to __stack_chk_fail on
mismatch, same with ARM64 design.

2.3 Kernel system call handling
Generally, the user space process on Linux uses the system call
wrappers in standard C library or calls the system call directly, to
request kernel fulfill certain privileged operations. As shown in
Figure 3, to handle a system call, the execution will switch from
user mode to kernel mode. The system call entry in kernel needs
to save the user space context and load the kernel registers. The
system call entry is defined as the kernel_entry on ARM64 and
entry_SYSCALL_64 on x86_64. After the system call entry, a system
call dispatcher will invoke the correct system call according to the
user-pass system call number to fulfill the system call request.

2.4 Performance monitor counter
Performance monitor counter provides a method to measure CPU
cycles, it is available on both ARM64 and x86_64 CPUs. ARM64
PMUv3 provides a set of performance monitoring registers [17],
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one of which is the cycle counter PMCCNTR_EL0. Its value increases
on every processor clock cycle or every 64 processor clock cy-
cle according to different configurations of the control register
PMCR_EL0[8]. Moreover, ARM64 adopts instruction msr to read the
value of PMCCNTR_EL0. For x86_64, Intel provides the performance-
monitoring counter (PMC) to measure CPU performance. PMC
registers can be set to count different events, such as unhalted core
cycles[11]. And instructions rdpmcwould read the the value of PMC
register into register EAX and EDX, which contain low 32 bits and
high 32 bits respectively.

Note that on both ARM64 and x86_64, userspace access to the
performance monitor counter registers is usually disabled for secu-
rity purpose. And this doesn’t hurt the userspace timing capability
as the userspace can still access the timer (such as using rdtsc to
read time-stamp counter) or invoke kernel routines via system calls
(such as gettimeofday) to get the timing information.

3 ASSUMPTIONS AND THREAT MODELS
We assume that the attacker has full control of the user space, but
it cannot change the kernel image. In other words, the attacker
cannot tamper with the existing kernel code or inject new kernel
code. This assumption is reasonable as the secure boot and trust
boot techniques are pretty mature nowadays, the boot-loader is
able to check the integrity of the kernel image before loading it [22].

We further assume that the attacker has the arbitrary kernel
memory read capability. In other words, the attacker can read any
kernel memory by exploiting kernel memory leak bugs or by launch-
ing side-channel attacks such as Meltdown and Spectre.

For the kernel memory write capability, the attacker can over-
write the kernel stack by overflowing kernel stack variables, such
as overflowing pointers or arrays. Note that the overflow must be
sequential, which means the attacker cannot skip kernel canary and
just overwrite the return address or the frame pointer saved on the
kernel stack. Moreover, we assume that the overflow is triggered
by calling system calls from user space. This is a valid assumption
as system calls are designed to be only kernel entry points for the
user space. Finally, we trust the random number generator on Linux
kernel, and the attacker cannot predict the next random number
that will be generated.

4 PESC DESIGN AND IMPLEMENTATION
In this section, we will first present the design of PESC, including
how to generate the new canary value and where to update the
canary. Then, we will talk about the implementation details of PESC
on both ARM64 and x86_64.

4.1 Overview
For both the global canary as well as the per-task canary design,
the attacker can leverage the leaked stack canary to craft the over-
flow payload so that stack canary will be overflowed by the correct
canary value. In other words, with the leaked canary value, the over-
flow attack can be conducted without being detected as the stack
canary value after overflow is correct. Although current canary
design with the string terminator is able to defend against strcpy
overflow attacks, however, there still exist other overflow attacks
that can bypass the string terminator canary, such as overflowing

syscall(1, fd, buffer, count)

write(fd, buffer, count)

SyS_write(fd, buffer, count)

User space

Kernel space kernel entry

syscall dispatcher

PESC: get new canary

Figure 3: PESC design. PESC represents Per System-call
Canary.

via memcpy. Therefore, a leaked stack canary is still a huge threat to
the canary based stack overflow protection.

To address this problem, we proposed PESC, representing Per
System-call Canary. The key observation behind PESC design is
that the kernel stack is empty before-serving/after-finishing one
system call so that PESC is able to generate a brand new kernel stack
canary without the burden of tracking and updating all previous
saved old stack canary values on the kernel stack. Let’s use Figure 3
to illustrate the design of PESC: when the user space calls the write
system call, the execution flow will switch to kernel space. The
very first piece of code is called kernel entry, which performs
the user-to-kernel context switching. Then according to the user
space passed system call number, the system call dispatcher will
find the correct system call (i.e., SyS_write) from the system call
table sys_call_table and jump to it to fulfill the user space system
call request. With PESC, a per system-call canary generation logic
is inserted into the system call handling path, as shown by the
green dashed box in Figure 3, so that a new stack canary will be
generated for each system call. As a result, PESC can achieve the
per system-call canary capability.

From the attacker’s perspective, to bypass the stack canary pro-
tection, and launch the stack buffer overflow attack, he/she must
get the leaked kernel stack canary value at first, by exploiting melt-
down vulnerabilities or other information leak bugs. After that, the
attacker can use the leaked canary value to craft a special overflow
payload and inject the payload to kernel space using another system
call so that the leaked canary value overwrites the canary value
on kernel stack. As a result, the overflow attack is conducted suc-
cessfully even under the protection of global and per-task canary
protection. On the contrary, the life cycle of a PESC stack canary is
limited to that system call only, which is significantly shortened
compared to the global canary and the per-task canary design. As
a result, the previously leaked stack canary is invalided by the new
canary generated when the attacker is injecting the crafted payload
the kernel via a new system call. In other words, PESC can protect
the kernel stack even with canary leakages.

PESC is achieved by generating a new stack canary at system call
handling path. Even though the idea sounds straightforward, PESC
needs to resolve two technical challenges to achieve high security
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and low performance overhead. First, for the new canary value gen-
eration, PESC needs to balance the randomness of newly generated
canary and the introduced performance overhead. Calling the time
consuming random number generator for every system call can
be a performance killer. To trade-off, PESC proposes two canary
value generation approaches, relying on the performance monitor
counter and kernel pseudo-random number generator, respectively.
We will present the details in §4.2.

Second, the kernel stack canary has to be changed before any
old canary value got pushed to the stack; otherwise, on a function
return, a stack canary mismatch will happen between the new
canary value and the old canary on the stack, which will crash the
kernel. To address this problem, PESC chooses the canary update
location in the kernel entry carefully, before any canary pushing
operations. The details will be covered in §4.3.

Note that the kernel thread stack is protected by the per-task
canary design as each kernel thread gets its own canary when being
forked. As system call is the only way that a user process can invoke
kernel functions, its stack is more likely to be corrupted. Therefore,
the system call stack should be protected more cautiously.

4.2 New canary value generation
For generating a new canary value, the intuitive approach would be
directly calling kernel pseudo-random number generator. However,
kernel pseudo-random number generation functions usually invoke
dozens of functions, containing hundreds of lines of code. Calling
these functions on every system call will introduce non-trivial per-
formance overhead. Therefore, to balance the canary randomness
and the performance, PESC proposes two approaches.

The first approach is to use the performance monitor counter
register (PMC) as the random source for the new canary, and we
termed this approach as PESC-PMC. With PMC system register as
the random source, PESC only needs several instructions to fetch
the value from the PMC system register, and implement the canary
update logic with a handful of instructions, which has minimal
performance overhead. For brevity, we defer the details to §4.4 and
§4.5. However, the canary value fetched from PMC register is not
fully randomized, which is the main security concern. Fortunately,
our evaluation shows that even the attacker can try to leak the
canary value right before the attacking system call, the success rate
is still very low, as shown in Figure 5.1.

The second approach relies on the kernel pseudo-random num-
ber generation function get_random_long to generate the new ker-
nel stack canary, termed as PESC-RNG. While the performance
of PESC-RNG is not as good as one of PESC-PMC, but it is still
acceptable. The performance evaluation result in §5 shows that the
performance overhead of PESC-RNG on the whole system is less
than 1%. Again, the details of PESC-RNG are covered in §4.4 and
§4.5.

4.3 New canary update location
For updating the canary value, a straightforward solution would
be generating a new canary and updating all canary value on the
stack to avoid a canary check mismatch. For example, if the canary
is changed after its value got pushed to the stack, a canary mis-
match will be detected on the function return, which will panic
the kernel. Therefore, all old canary values on the stack need to

be updated when generating a new stack canary. As a result, this
straightforward approach requires to record all canary addresses
and update all canary values on kernel stack on every system call,
which introduces non-negligible performance overhead.

To improve the performance, PESC leverages the key insight that
the kernel stack is empty before-serving/after-finishing one system
call. Instead of updating all old canary values on the stack, PESC
proposes to generate the new stack canary at the very beginning
of kernel entry, before any canary pushing instructions, so that no
residual canary value gets pushed to the stack, hence no need to
update old canary values on the stack. The exact location of the new
canary update depends on the implementation and architecture,
and details will be given in §4.4 for ARM64 and §4.5 for x86_64.

4.4 PESC implementation on ARM64
PESC ARM64 is implemented on Android HiKey960 Linux ker-
nel [10], on the version of 4.19.36. We have implemented both
PESC-PMC and PESC-RNG.

4.4.1 PESC-PMC on ARM64. On ARM64, the performance mon-
itors cycle count register is PMCCNTR_EL0, which holds the cycle
counts. As mentioned before, though ARM64 now is using a global
canary design, it already includes a per-task stack canary member
stack_canary in its process control block task_struct. Therefore,
for generating the new canary value, PESC-PMC fetches the PMC
register using instruction mrs x19, PMCCNTR_EL0, and saves the value
to the per-task stack canary storage task_struct->stack_canary.

Before reading the PMC register value, PESC must configure
PMC properly. The performance monitor is usually disabled on pro-
duction devices. Therefore, PESC-PMCneeds to enable performance
monitor on system boot-up. When the kernel boots up, PESC-PMC
will first clear PMUSERENR_EL0.EN bit, so that the user space access to
performance monitor registers is disabled. Second, PESC-PMC will
set the PMCNTENSET_EL0 register to enable the cycle counter. Finally,
PESC-PMC clears the PMCR_EL0.D bit to make PMCCNTR_EL0 count
every cycle and sets PMCR_EL0.E to enable PMCCNTR_EL0. By repeating
the above steps on every core, PESC-PMC enables all performance
monitor counters. Therefore, no matter which cores one process is
running on, it can fetch performance monitor counters and use it
as the new canary value.

For the new canary update location, PESC-PMC modified the
kernel_entry assembly macro to insert the above code, so that new
canary value will be generated for every user-to-kernel transition
(i.e., system calls). Note that besides user-to-kernel transition trig-
gered by system calls, kernel_entry macro also handles the kernel-
to-kernel entries, such as interrupts. As the attacker cannot inject
payload via interrupts, PESC-PMC does not change the canary
value on kernel-to-kernel transitions.

Note that the performance monitor enabling code only runs once
during the system boot-up, the canary update logic at every system
call only involves a couple of assembly instructions. Therefore, the
performance impact of PESC-PMC is minimal.

4.4.2 PESC-RNG on ARM64. For PESC-RNG, we inserted a kernel
function get_random_canary call to the function el0_svc_handler,
before the real system call dispatcher el0_svc_common. The func-
tion get_random_canary relies on get_random_long, will generate a
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(a) getpid on ARM64 (b) read on ARM64 (c) fork on ARM64

(d) getpid on x86_64 (e) read on x86_64 (f) fork on x86_64

Figure 4: Figure (a), (b), and (c) show probability distribution using getpid, read and fork system calls, respectively. Figure (d),
(e), and (f) show the corresponding probability distributions of x86_64. The bin size of the histogram is set to 1.

pseudo-random canary and assign it to task_struct->stack_canary

of current task. Same with PESC-PMC, the insertion location is
carefully chosen so that no kernel canary exists on the kernel stack,
therefore no need to update the stack. Different from PESC-PMC,
PESC-RNG depends on the kernel pseudo-random number gen-
erator, and does not require to enable the performance monitor
counter.

Note that currently ARM64 architecture has no hardware support
for random number generation. As a result, there is no fast and
secure way of generating a random number. This is the reason why
PESC needs trade-off. Fortunately, the 5th generation of ARM64
architecture extension ARMv8.5 provides the hardware-backed
random number generator. More specifically, ARMv8.5 introduces
two registers, RNDR and RNDRRS, and makes sure that reads to these
registers return a 64-bit random number [7]. With the hardware
support, PESC is able to generate the 64-bit random canary by using
a single instruction, achieving both security and performance.

Note that the latest ARM64 Linux kernel used by Android Hikey
board is v4.19, which only supports the global canary, we backport
the per-task canary from Linux kernel v5.0 to v4.19 and use GCC9.1
compiler to compile the kernel to enable per-task canary on our
ARM64 Hikey board.

4.5 PESC implementation on x86_64
Same with the ARM64 architecture, we also implement both PESC-
PMC and PESC-RNG on X64_64. The implementation is based on
Ubuntu 18.04 with a kernel version of 5.0.0.

4.5.1 PESC-PMC on x86_64. On x86_64, the performance moni-
toring counter register is PMC. For generating new canary values,
PESC-PMC uses the instruction rdpmc to read the performance mon-
itoring counter, the lower 32 bits and higher 32 bits are saved into
different registers. Then PESC-PMC concatenates these values and

uses it as the new canary value. As mentioned in §2.2.2, the per-
task canary design on x86_64 has two copies of the canary, one
is in task struct while the other one is in thread-local-storage for
current running task. Therefore, when updating the new canary
value, PESC-PMC updates both places. The PESC-PMC implemen-
tation only contains about one dozen of instructions in total, the
performance impact is guaranteed to be small.

For the new canary update location, PESC-PMC inserts the
new canary generation code to the beginning of the do_syscall_64

function to make sure no old canary values exist on kernel stack.
For security reasons, PESC-PMC disables user space direct ac-
cess to the performance monitor registers by clearing the CR4.PCE

(Performance-monitoring Counter Enable) bit on x86_64 Ubuntu.
As a result, only ring 0 can execute rdpmc instruction. The user
space has no way to access the value of PMC register. This will not
hurt the userspace timing capability as the user program can still
use rdtsc to read the time-stamp counter.

4.5.2 PESC-RNG on x86_64. On x86_64, most of PESC-RNG design
is the same as PESC-PMC. The only difference is that PESC-RNG
replaces the rdpmc instruction with get_random_canary function call,
which calls get_random_long to generate a 64-bit pseudo-random
value. Similarly, the newly generated canary is assigned to the
canary copies in both task struct and thread-local-storage.

Note that current x86_64 CPUs provides hardware support for
the random number generation, the corresponding instruction
RDRAND can generate 16-bit, 32-bit or 64-bit random numbers. How-
ever, the overhead of RDRAND is high. On Intel Core i7-7700K pro-
cessor (Kaby Lake-S micro-architecture), with a frequency of 4.5
GHz, one RDRAND instruction needs 110 ns or 463 CPU cycles [14].
Even worse, one execution of RDRAND is not guaranteed to generate
a random number for sure, and Intel document recommends that 10
retries in a tight loop are likely to get a new random number [4]. As
time needed for generating a random number using RDRAND cannot
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be determined, therefore we choose kernel pseudo-random number
generation function to generate the new canary for PESC-RNG.

5 EVALUATION
In this section, we first examine the security of PESC-PMC de-
sign, and then evaluate the performance impact of both PESC-PMC
and PESC-RNG. The experiments for ARM64 were conducted on
HiKey960 board [10], with 4 Cortex A73 and 4 Cortex A53 cores,
3GB DRAM and 32GB flash storage, running Android 10.0-rc3 with
Linux kernel 4.19.36. For x86_64, we conducted experiments on
Ubuntu 18.04 LTS with Intel i7-7700 CPU and 16GB RAM, the Linux
kernel version is v5.0.0.

5.1 Security evaluation
PESC-RNG uses kernel pseudo-random number generator to gener-
ate the canary value, the randomness of the newly generated canary
is guaranteed. Different from PESC-RNG, for the performance rea-
son, PESC-PMC chooses to use the value of performance monitor
counter as the new canary value directly. The value of performance
monitor counter cannot provide the same randomness entropy com-
pared with the PESC-RNG. Therefore, in this section, we examine
the randomness entropy of performance monitor counter value
thoroughly.

As mentioned in before, for both ARM64 and x86_64, the user
space direct access to the performance monitor counter is disabled.
As a result, the attacker cannot directly read the PMC register value.
As the new canary value will be generated on-fly when the attacker
is trying to trigger the buffer overflow attack, there is no way the
attacker can infer the canary beforehand. The best an attacker can
do is to leak the old canary value and use it to guess the new value
generated by the next system call. For example, the attacker can ei-
ther use information leak vulnerabilities or side-channel techniques,
to leak the canary value saved in task_struct->stack_canary or on
the stack. Based on the old canary value, the attacker can infer the
range of the PMC value and guess the canary that will be generated
on the next system call.

Therefore, to test PESC-PMC security, we need to evaluate the
PMC value variations between two consecutive system calls, which
is the best the attacker can achieve. To cover different system call
lengths, we choose three system calls, getpid, read and fork, in
which getpid is the shortest system call in Linux kernel [1], read
system call reads 100 bytes of data, representing mid-length system
calls while fork is the heavy system call. For each system call, we
call it twice consecutively and record the canary values generated
by PESC-PMC. We repeat this process every 100 milliseconds for
10000 times. Finally, we removed the outlier values and calculated
the difference values between 9000 consecutive canary pairs. The
results are shown in Figure 4.

From Figure 4, it is easy to see that even for the shortest system
call getpid, which is unlikely to have the memory leak bugs, the
highest chance that the attacker can guess the PMC right is less
than 1% on both ARM64 and x86_64, as shown by Figure 4(a) and
Figure 4(d). For a mid-length system call read, the highest correct
guess chance falls to less than 0.5% on both ARM64 and x86_64,
while for heavy system call like fork, the correct guess chance falls
to less than 1‰ on both ARM64 and x86_64, which is close to zero.

(a) ARM64 (b) x86_64

Figure 5: Performance overhead on individual system call.
Lower is better. The y-axis is the normalized overhead. The
system call time of the original kernel is normalized to 1.

In other words, the PMC guess successful rate by the attacker on
ARM64 is always less than 1% both on ARM64 and on x86_64.

Note that the above experiments measure the PMC differences
between two consecutive system calls. In a real attacking scenario,
the attacker needs to craft the payload using the leaked canary,
which takes more time, making the PMC value on the next system
call even harder to predict.

5.2 Performance evaluation
Both PESC-PMC and PESC-RNG require to add code in system call
handling code to generate new kernel canaries for each system calls.
The newly added code will impact performance. Therefore in this
section, we want to evaluate the performance overhead introduced
by PESC.

The performance evaluation consists of two tests: micro test and
macro test. In the micro test, as we know the added code is mainly in
system call handling. Therefore, we need to understand how much
slow down the PESC will introduce to individual system calls. In
the macro test, we want to know the performance impact of PESC
on the whole system. We evaluated the performance overhead of
PESC-PMC and PESC-RNG on both ARM64 and x86_64.

5.2.1 Micro Test. In the micro test, we want to understand the
performance impact of PESC on individual system calls; therefore,
we conducted the performance evaluation using both selected indi-
vidual system calls and the UnixBench [2].

For the performance of individual system call, we choose the
same three system calls getpid, read, and fork used in Security
Evaluation 5.1, representing short system calls, mid-length systems,
and heavy system calls, respectively. For each system calls, we test
the performance for three kernel settings: original kernel without
PESC, the kernel with PESC-PMC, and the kernel with PESC-RNG.
We calculated the average time cost of 1000 consecutive getpid

calls, 1000 consecutive read calls, and 1000 consecutive fork calls
(the parent process did not wait child processes to finish) for each
kernel settings. Every read system call reads 100 bytes data.

The results are shown in Figure 5. The y-axis represents the
normalized performance overhead while the system call time of
the original kernel setting is normalized to 1. It is easy to see that
for both ARM64 and x86_64, the overhead of PESC-PMC is low.
Average performance overhead is close to zero (about 0.8%) on
ARM64, and is about 3% on x86_64, since PESC-PMC only adds
several instructions to the system call entry. In PESC-RNG, system
calls spend more time than on both ARM64 and x86_64 due to
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(a) 1 parallel process on ARM64 (b) 8 parallel processes on ARM64

(c) 1 parallel process on x86_64 (d) 8 parallel processes on x86_64

Figure 6: UnixBench results. 1 parallel process and 8 parallel processes settings are used. Original means the original Linux
kernel without PESC. For the result, higher is better.

Table 1: The scores of Android synthetic benchmarks on ARM64.

Name Original PESC-PMC Overhead PESC-RNG Overhead
Linpack 2307 2306 0.04% 2307 0
GeekBench

Single Core
Multi Core

1874
4424

1871
4379

0.16%
1.02%

1871
4380

0.16%
0.99%

Vellamo
Browser
Metal

5400
3240

5410
3229

-0.19%
0.34%

5383
3228

0.37%
0.49%

average - - 0.27% - 0.40%

many functions are called for random number generation. As getpid
is very short, the added random number generation functions in
kernel entry will make a big impact (about 36% on ARM64 and 34%
on X86_64). But for mid-length system calls and heavy system calls,
the performance overhead drops to 13% and 3% on ARM64, 27%
and 2% on X86_64, respectively.

Besides self-picked individual system calls, UnixBench also gives
the performance evaluation of individual system calls as well as
combined operations. For ARM64, We compiled UnixBench using
Clang/LLVM in termux-0.84 and ran it on HiKey960 board. we set
the iteration parameter of UnixBench to 1 and disconnected the
display device of HiKey960 board for all UnixBench experiments to

minimize the board heating, as HiKey960 board is very sensitive to
temperature.

For UnixBench experiments, we choose both single process and
multi-processes settings. Combining with the two architectures
ARM64 and x86_64, we have 4 experiment scenarios. For each
scenario, we ran UnixBench eight times, removed the highest one,
and the lowest one and calculated the average on the remaining
six results to minimize the deviation. The results are shown in
Figure 6. From the figure, we can see that the performance of PESC-
PMC is very close to the performance of the original kernel (higher
is better). On average, the performance overhead of PESC-PMC
is less than 1% on both ARM64 and x86_64, for both 1 process
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Table 2: The SPEC CPU2006 benchmark performance overhead on x86_64

program Original (s) PESC-PMC (s) Overhead (%) PESC-RNG (s) Overhead (%)
401.bzip2 297 297 0 298 0.34%
403.gcc 165 166 0.61% 166 0.61%
429.mcf 174 174 0 175 0.57%
445.gobmk 309 309 0 309 0
456.hmmer 245 244 -0.41% 244 -0.41%
458.sjeng 337 337 0 337 0
462.libquantum 222 222 0 224 0.90%
iheight464.h264ref 324 324 0 323 -0.31%
471.omnetpp 227 227 0 227 0
473.astar 270 270 0 270 0
483.xalancbmk 127 128 0.79% 127 0
average - - 0.09% - 0.15%

and 8 processes test settings. For PESC-RNG, the random number
generation code is added to each system call, which incurs large
performance overhead. As a result, the performance of PESC-RNG,
in general, is 7% and 8% slower than the original kernel, on ARM64
and x86_64, respectively.

5.2.2 Macro Test. In macro test, we evaluate the performance im-
pact of PESC-PMC and PESC-RNG on the whole system by using
the synthetic benchmarks.

For ARM64, we choose three popular benchmarks from the An-
droid play store: Linpack, GeekBench, and Vellamo. As mentioned
before, HiKey960 board is very easy to have the heating problem,
and the board itself is very sensitive to temperature rise. To make
sure the experiments are conducted fairly and accurately, we turn
off the board to cool down for about 10 minutes after every bench-
mark test. Also, we keep the environmental temperature stable,
to minimize the environmental impacts. Similar to the UnixBench
tests, we ran each benchmark five times and also removed the high-
est one and the lowest one to minimize the deviation. Table 1 lists
the benchmark scores of original kernel without PESC, PESC-PMC
kernel, and PESC-RNG kernel on HiKey960 board, higher is better.
Column 2, 3 and 5 show the benchmark scores while column 4 and 6
show the corresponding degradation of PESC-PMC and PESC-RNG.
The average score degradation is 0.27% and 0.40% for PESC-PMC
and PESC-RNG, respectively. In other words, the performance over-
head imposed by PESC-PMC and PESC-RNG on the whole system
is small.

For x86_64, We use SPEC CPU2006 benchmark [19] to evalu-
ate the performance of the whole system. We ran SPEC CPU2006
benchmark 2 times for each kernel. The result is shown in Table 2.
Column 2,3 and 5 show the run time of the tests on the system with
the original kernel, kernel with PESC-PMC and kernel with PESC-
RNG. Column 3 and 5 calculate the slowdown of PESC-PMC and
PESC-RNG, respectively. From the table, it is easy to see that the
average performance overhead is 0.09% and 0.15% for PESC-PMC
and PESC-RNG, respectively. In other words, neither PESC-PMC
nor PESC-RNG introduce a big performance overhead to the whole
system. A possible explanation is that system calls are not called so
frequently when compared to other functions. As we add code in
system call handling, which influences the system call performance

only, the low proportion of system calls in the benchmark dilutes
the impact of the added code in PESC.

5.3 Limitations
Current PESC design provides the per-system canary for system
call stacks. However, for kernel thread stacks and interrupt stacks,
PESC only provides the same protection as per-task canary does.

Moreover, PESC can defeat the canary leak and payload injection
via two separated system calls. Unfortunately, PESC cannot defend
against attacks (mentioned as the the bridging gadget in [44]) that
leak the kernel stack canary and inject crafted payload in one single
system call.

6 RELATEDWORKS
PESC is in general related to the stack canary design and improve-
ment studies. In this section, we will compare PESC with these
related works.

6.1 Static stack canary
Stack canary was first proposed in StackGuard [27] in 1998. The ba-
sic idea of original stack canary design, including StackGuard [26,
27, 42], Propolice [30] and GS (Buffer Security Check) [15], is
to put a canary word between local variables and the return address
and check the canary value on function return to detect any return
address corruptions. The content of canary word can be divided into
three types. The first type is terminator canary [21, 28, 39, 42]. It
contains string terminators; therefore any buffer overflow caused by
the string copy will be defeated since the terminators will terminate
the overflow string automatically. Random canary [21, 28, 39, 42]
is another type of canary. As the canary is a random number which
is hard to guess, it is able to prevent all sequential overflows. Ran-
dom XOR canaries [21, 39, 42] is a random number which en-
crypts control data on stack using exclusive-or.

However, for all these designs, the canary value remains the
same after initialization, which makes them vulnerable to memory
leaks. For example, attacks [25, 29, 39, 40, 45] are able to defeat
the protection of stack canary. Even worse, security researchers
have released an open-source framework named CookiesCrumbler,
which is able to analyze different stack canaries designs and launch
corresponding bypassing attacks [24]. Unfortunately, even after 20
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years, ARM64 Linux kernel still uses the very basic global static
kernel canary design, making it vulnerable to all memory leaks and
modern side-channel attacks, which is the direct motivation of our
PESC design.

6.2 Dynamic stack canary
A series of canary enhancement techniques are proposed to secure
the stack canary.

RAF-SSP (Re-new After Fork Stack Smashing Protector) [35]
enhanced canary design by differentiating the child process’s canary
from its parent. Therefore, RAF-SSP is able to defeat byte-by-byte
attacks that exploit the inherited address space of the child process
right after a fork system call. It updates child process reference
canarywith a randomnumber right after the child process is created.
With this technique, the attacker is unable to infer any stack canary
information of the parent process even by byte-by-byte attacking
the canary of the child process. And RAF-SSP does not allow the
child process to return since it assumes child process on a server
end with an exit() function, which limits its adoption. Besides RAF-
SSP, SSPFA [36] is proposed as an enhancement of SSP for Android
devices, which has a similar design with RAF-SSP. However, for
both RAF-SSP and SSPFA, they can not protect the stack if the
attacker has the arbitrary memory read capability by exploiting
memory leak or side-channel vulnerabilities.

DynaGuard [38] uses a canary linked list stored in thread-local-
storage (TLS) to implement a dynamic canary design. It updates
the canary in both the TLS and all inherited stack frames after the
fork system call. Thus, all canaries on the stack of the newly fork
child process are different from that of its parent process, which
can not be exploited to guess the parent canary value. However,
the pin-based [34] DynaGuard introduces a run-time overhead of
170.66%, which is too high for practical deployments.

DCR (Dynamic Canary Randomization) [31] uses a canary linked
list whose head node is stored in the location of the original GCC
SSP in TLS. When a user specified function is invoked, the system
re-randomizes canary value, stores it on stack and inserts it into the
canary linked list. Then it checks all the canary values on the stack
since buffer overflow might happen in previous functions. When
the function returns, DCR is able to find the head of the list using
embedded offset in canary value and then checks it. The average
run-time overhead of DCR is more than 24%, and it also needs extra
space to store canaries.

DiffGuard (Different function frameswith different canaries) [47]
will update all stack canaries of newly forked child process for fork
system call. It also implements different canaries for each function
call. It uses a random canary buffer (RCB) in the TLS to store ca-
naries. When a new function is called, a new canary will be fetched
from RCB, and the index of RCB will be incremented. When the
function returns, the process is able to check whether the canary is
corrupted using this index. DiffGuard realizes a per-frame canary
design and its average run-time overhead is 3.2%. DiffGuard has a
higher overhead than PESC. Moreover, it requires extra storage to
hold the RCB.

P-SSP (Polymorphic Stack Smashing Protector) [43] keeps the
structure of TLS unchanged and uses a pair of shadow canary
words to defeat byte-by-byte attacks. One word is a random number

generated when the child process is forked, and the other one is
calculated by XORing this random number and the original canary.
Therefore, the original canary can be recovered by using XOR
operation on these two words. Instead of storing original canary on
stack, these two words are stored on stack. Therefore, P-SSP is able
to defeat byte-by-byte attacks and the exhaustive search. By storing
these two shadow canary word on stack rather than the original
canary, attackers cannot get accumulated information about the
original canary.

Sadly, all of these designs store their canaries either in the mem-
ory or in TLS, which is also part of the main memory. As a result, a
single memory leak vulnerability or hardware related side-channel
attack can bypass all of them. To the contrary, PESC is designed to
protect kernel stack against memory leaks. Even the attacker has
the arbitrary memory read capability, he/she still cannot bypass
the protection of PESC.

7 CONCLUSION
In this paper, we proposed PESC, a new Per System-call Canary
design for Linux kernel. The basic idea of PESC is to generate a
new kernel stack canary at every system call entry. Compared
with existing global canary design and per-task canary design,
PESC has two benefits. First, by generating a new canary for every
system call, PESC invalidates the leaked kernel canaries. As a result,
the attacker cannot accumulate the knowledge of canaries across
system calls. Second, by generating the new canary on-fly for every
system call, PESC ensures that the attacker has no way to leak the
stack canary beforehand, even though the kernel has memory leak
vulnerabilities.

To achieve PESC, we propose to generate the new canary value at
the system call entries, before any canary being pushed to the stack,
so that the performance overhead is reduced as there is no need to
update the canary value on the stack. To balance performance and
security, we propose two implementations of PESC: PESC-PMC
and PESC-RNG. The canary value is fetched from the performance
monitor counter register on PESC-PMC and is generated by the
kernel random number generator on PESC-RNG.

We implemented PESC-PMC and PESC-RNG on both ARM64 and
x86_64 and conducted both security and performance evaluations
on ARM64 HiKey960 board and the x86_64 Intel i7-7700 CPU. Our
security evaluation shows that for PESC-PMC, even with the arbi-
trary kernel read vulnerabilities, the chance of the attacker predict-
ing new stack canary is still small. Performance-wise, for ARM64
implementations, the Android synthetic benchmark experiments
show that the average performance overhead of PESC-PMC and
PESC-RNG is 0.27% and 0.40%, respectively. For x86_64 implemen-
tation, the performance overhead of SPEC CPU2006 experiments is
0.09% and 0.15%.
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