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Abstract
Since its debut, SGX has been used to secure various types
of applications. However, existing systems usually assume a
trusted enclave and ignore the security issues caused by an un-
trusted enclave. For instance, a vulnerable (or even malicious)
third-party enclave can be exploited to attack the host appli-
cation and the rest of the system. In this paper, we propose an
efficient mechanism to confine an untrusted enclave’s behav-
iors. In particular, the threats of an untrusted enclave come
from the enclave-host asymmetries, which can be abused to
access arbitrary memory regions of its host application, jump
to any code location after leaving the enclave and forge the
stack register to manipulate the saved context. Our solution
breaks such asymmetries and establishes mutual distrust be-
tween the host application and the enclave. Specifically, it
leverages Intel MPK for efficient memory isolation and the
x86 single-step debugging mechanism to capture the exiting
event of the enclave. Then it performs the integrity check of
the jump target and the stack pointer. We have implemented
a prototype system and solved two practical challenges. The
evaluation with multiple micro-benchmarks and representa-
tive real-world applications demonstrated the effectiveness
and the efficiency of our system, with less than 4% perfor-
mance overhead.

1 Introduction

Intel Software Guard eXtension (SGX) provides a hardware
Trusted Execution Environment (TEE). With SGX, the sensi-
tive code and data can be put into a protected memory region,
i.e., the enclave, which is hardware-isolated from the rest
of the system. Even system software, e.g., the OS and the
hypervisor, is unable to access the content of the enclave.

The strong security and privacy guarantees provided by
SGX make it attractive to build the confidential cloud comput-
ing infrastructure [10, 12, 15, 25, 26, 29, 38]. In these systems,
the major concern is that the underlying computation platform
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is out of the tenant’s control and untrusted. SGX addresses
this by removing the cloud provider out of the trusted com-
puting base (TCB).

Problem statement However, existing systems usually as-
sume a trusted enclave. The security issues caused by an un-
trusted enclave have been neglected. Such an assumption is
problematic from the perspective of an enclave’s host applica-
tion. One representative scenario is the adoption of third-party
enclaves. With the popularity of SGX, service providers tend
to deploy their services (e.g., trained machine learning mod-
els) inside the enclave to protect their intellectual property.
This greatly simplifies the interactions between the service
providers and consumers, thus creating valuable business ben-
efits. However, embedding the service provider’s enclave into
an application brings huge security risks to users, considering
the fact that the service enclave comes from an (untrusted)
third-party and could be vulnerable and even malicious . Even
worse, the isolation provided by SGX makes it much harder
to inspect the third-party enclave. One recent research [27]
has demonstrated the hazard of an enclave malware to hijack
its host application’s control flow stealthily. Furthermore, po-
tential software bugs in an enclave also makes it untrusted to
the host application. For instance, Van Bulck et al. [33] vetted
six popular SGX runtimes and found security issues in all of
them. A buggy enclave can be exploited by the attackers to
compromise its host application and even the system software
further.

Current solutions and their limitations Because of the
isolation provided by SGX, an enclave cannot be inspected at
runtime from the host application [14]. Besides, the code in
an enclave may be deployed as cipher-text and only decrypted
inside the enclave at runtime to protect the code secrecy [9].
This further impedes introducing a full vetting process on the
enclave code.

One proposal is to detect the malicious actions of an en-
clave by monitoring its I/O behaviors [14]. However, how to
(automatically) recover the enclave’s semantics from under-
lying I/O operations is unclear. Moreover, Costan et al. dis-



cussed embedding a standardized static analysis framework
into the enclave [14]. This brings two concerns, i.e., the source
credibility of the static analysis framework and the increased
TCB introduced by the framework. As the first implemented
defense system, SGXJail [36] leverages the process isolation
to confine an untrusted enclave. However, it requires creating
a dedicated sandbox process for each enclave, which is not
scalable for multiple enclaves and multi-threading scenarios.
Weiser et al. proposed a hardware-based defense mechanism
named HSGXJail [36]. It requires hardware modification, thus
cannot be applied to existing platforms.

Our solution In this paper, we propose an efficient de-
fense mechanism to confine an untrusted enclave’s behaviors.
Threats caused by an untrusted enclave are due to the blind
trust of the host application to the enclave [36]. Such blind
trust causes the enclave-host asymmetries, i.e., the data access
asymmetry and the control flow asymmetry.

Specifically, with the data access asymmetry, an enclave
can read and write arbitrary memory regions of its host appli-
cation, while the memory region of an enclave is hardware-
protected by SGX. With the assistance of Intel Transactional
Synchronization Extensions (TSX), an enclave can even probe
the whole address space of its host application stealthily with-
out triggering any exceptions [27]. Besides, with the control
flow asymmetry, an enclave can jump to any code location
of its host application after leaving the enclave and forge the
stack register to manipulate the saved context.

Our solution intends to break such asymmetries and estab-
lishes mutual distrust between the host application and the
enclave. To this end, it leverages two x86 hardware features,
i.e., Intel memory protection key (MPK) and x86 single-step
mode, to break the data access and control flow asymmetries,
respectively. Specifically, it leverages MPK for efficient mem-
ory isolation. MPK enables an efficient partition of a process’s
address space into disjoint protection keys and provides the
permission control over these protection keys from a per-
thread view. Our solution assigns different protection keys
for the host application and the enclave, so that the enclave
cannot access arbitrary memory regions of its host application.
It leverages a shared buffer for the data sharing crossing the
enclave boundary with the same protection key. Moreover, it
leverages the x86 single-step debugging mechanism to cap-
ture the event when an enclave is exiting. It then performs the
integrity check for the jump target and the stack pointer. Note
that, applying these two hardware features to confine the en-
clave’s behavior is non-trivial since we need to ensure that the
enforcement of our solution cannot be bypassed (Section 4.3).

Because our solution is based on in-process confinement, it
is more scalable compared to the previous system [36], which
relies on the inter-process isolation. Our solution does not
introduce any performance overhead for the code execution
inside the enclave. The overhead only occurs when the exe-
cution crosses the boundary of the host application and the
enclave.

We have implemented a prototype system named SGXLock
based on Intel SGX SDK for Linux. Note that our design
is coupled with neither Intel’s SGX SDK nor Linux. It is
applicable to other SGX runtimes and OSs as long as MPK
and x86 single-step mode are supported.

We use multiple micro-benchmarks and real-world applica-
tions to evaluate the performance overhead of our system. In
particular, we use three representative applications, i.e., the
privacy-preserving machine learning service, the relational
database, and a HTTPS web server in the evaluation. The ma-
chine learning service usually requires the large size parame-
ter passing, e.g., for model weights or inputs. The database
and a web server require lots of system calls, which represents
the scenarios of high-frequent context switches between the
host application and the enclave. The evaluation result shows
that our prototype is efficient. It only introduces an average
performance overhead of 0.84% for the machine learning ser-
vice, 1.26% for the database and 3.98% for the HTTPS web
server.

In summary, this paper makes the following main contribu-
tions.
• We summarize two types of the enclave-host asymmetries

and work towards establishing mutual distrust between
them. In particular, we leverage two x86 hardware features,
i.e., MPK and the single-step mode, to efficiently break the
asymmetries (Section 4.1 and Section 4.2).

• We have solved two practical challenges, i.e., blocking
PKRU update inside the enclave and host stack pointer ma-
nipulation by the enclave (Section 4.3), and implemented a
prototype system named SGXLock (Section 5).

• The evaluation with multiple micro-benchmarks and repre-
sentative applications shows the efficiency of our system,
with less than 4% performance overhead (Section 6).
To engage the community, we will release the source code

of our system 1.

2 Background

2.1 Intel SGX
Intel Software Guard eXtension (SGX) allows an application
to create a so-called enclave, which contains sensitive infor-
mation (code and data). The confidentiality and integrity of an
enclave are hardware-guaranteed, even the system software
(e.g., OS and hypervisor) cannot access the content of the
enclave. Architecturally, an enclave is a protected memory
region residing in the host application’s address space.

Host-enclave interaction The programming model of the
Intel SGX SDK [3] allows developers to specify two kinds
of host interfaces for the enclave. First, an invocation into
the enclave is referred as an ECALL, which is used by the host
application to invoke a specific pre-defined function inside

1https://github.com/blocksecteam/sgxlock



the enclave. Second, OCALLs are used by the enclave to invoke
the functions outside the enclave, which are usually aimed to
request OS services (e.g., system calls). Besides, the SDK per-
forms proper sanitizing and marshaling for the ECALL/OCALLs’
parameters according to the argument attributes specified by
the enclave developer. For instance, for a data pointer argu-
ment of an ECALL with the [in,size=10] attribute, the SDK
will allocate a 10-byte memory buffer inside the enclave and
copy the corresponding data from the host application into
the allocated buffer inside the enclave.

The ECALL/OCALL interface functions are defined via a so-
called Enclave Definition Language (EDL). The Edger8r tool,
shipping as part of the SDK, can generate (dispatch/receiv-
ing) edge routines for ECALLs/OCALLs according to developer-
defined EDL files. These edge routines reside in both the host
application and the enclave to route ECALL/OCALL requests.

Besides, the Trusted Runtime System (tRTS) and Untrusted
Runtime System (uRTS) are provided to embed into an en-
clave and its host application to perform enclave manage-
ment and ECALL/OCALL requests routing. The dispatch (re-
ceiving) edge routines reside in both sides will send (accept)
the ECALL/OCALL requests to (from) the tRTS/uRTS and redi-
rect them from (to) the user code. The combination of the
tRTS/uRTS and the edge routines facilitate the (host appli-
cation/enclave) developers to invoke an ECALL/OCALL as a
function call.

The implementation of ECALL/OCALL interfaces is based on
two user-mode instructions, EENTER and EEXIT, respectively.
Specifically, the EENTER instruction is used by the host appli-
cation to transfer the control to a predefined address inside
the enclave. The EEXIT instruction makes the execution leave
from the enclave. As an operand of the EEXIT instruction,
the RBX register specifies the jump target outside the enclave,
whose value will be filled into the RIP register after the exe-
cution leaves from the enclave. Therefore, the jump target of
the EEXIT instruction is enclave-manipulable.

Moreover, SGX leaves most of the execution states (e.g.
registers) switching and sanitizing to the software when the
execution crosses the boundary of the host application and
the enclave via the EENTER and EEXIT instructions. For in-
stance, when the execution leaves the enclave via the EEXIT
instruction, it is the responsibility of the enclave code to refill
the host stack pointers, i.e., RSP and RBP. Thus, the enclave
can refill a fake stack pointer inside the host application to
manipulate the saved context.

Furthermore, the enclave execution can be aborted asyn-
chronously when an exception (e.g., a page fault or a hardware
interrupt) occurs. This is referred as asynchronous enclave
exit (AEX). On an AEX event, the processor saves the en-
clave’s current execution context, such as general purpose
registers (GPRs) and processor extended states, into the en-
clave’s state save area (SSA) frame. Then the processor sets
the RIP register to the value of the Asynchronous Exit Pointer
(AEP, normally points to the ERESUME instruction) and exits

the enclave. After that, the processor delivers the AEX event
as an normal exception to the system software. Note that the
AEP is specified during enclave entry (as the operand of the
EENTER/ERESUME instruction) and cannot be modified during
the enclave execution. After handling the AEX event, the
host application can reenter the enclave and resume the previ-
ously saved execution context of the enclave via the ERESUME
instruction.

SGX supports multi-threading with a special enclave data
structure, named Thread Control Structure (TCS). A TCS
contains information of a thread executing inside an enclave,
such as the address of the enclave entry and the relative ad-
dress of SSA. The content of a TCS is specified by the enclave
(developers) and is not accessible by the software (including
the enclave) after being initialized. Whenever the execution
wants to enter the enclave (via EENTER/ERESUME), a free TCS
needs to be specified in the instruction operand. By doing this,
SGX allows concurrent execution inside the enclave.

2.2 Intel MPK

Memory Protection Key (MPK) is a new hardware feature
introduced in recent Intel processors to provide permission
control over the page groups from a per-thread view. MPK
exploits four previously-unused bits of the page table entry
to serve as the page’s protection key. Thus, MPK partitions a
process’s address space into 16 disjoint protection domains.
To enforce the per-thread permission control, a per-core 32-
bit protection key rights register (PKRU) is introduced. Ev-
ery two bits in PKRU determine the access permission to
one specific protection key. Specifically, PKRU[2i] repre-
sents the access-disable bit while PKRU[2i+1] represents the
write-disable bit for protection key i. Based on access-disable
and write-disable bits, three permission policies are enforced:
read/write, read-only and no-access.

To access PKRU, MPK introduces two new user-mode
instructions, RDPKRU (for reading) and WRPKRU (for writing).
Updating the value of the PKRU register with the WRPKRU
instruction has negligible overhead, which takes less than 20
cycles [24]. This makes MPK a highly efficient user-space
memory permission control primitive. Note that the execution
permission is not impacted by MPK.

Interact with SGX During the enclave execution, the value
of PKRU can be stored into and restored from memory as part
of the processor’s extended states, as long as the bit 9 in the
enclave’s XFRM attribute field is set. Inside the enclave, the
processor’s extended states can be stored into and restored
from memory in two scenarios. First, an enclave can save and
restore them via XSAVE and XRSTOR instructions. Second, the
processor’s extended states are saved into the enclave’s state
save area (SSA) frame on an AEX event and restored when
reentering the enclave with the ERESUME instruction.



2.3 The x86 Single-Step Mode

The x86 architecture supports the single-step mode for debug-
ging. It allows the processor to generate a trap after executing
each instruction. The single-step mode is activated by setting
a bit, named Trap Flag (TF), within the processor’s FLAGS
register. If the TF bit is set by an application using a POPF,
POPFD, or POPFQ instruction, the CPU will execute one instruc-
tion and then stop. At the same time, a single-step debug
exception is generated. Accordingly, the single-step mode can
be disabled by clearing the TF bit.

Interact with SGX For the opt-out enclave (i.e. enclave
with the debugging feature disabled), if the TF bit is set at
the time of the enclave entry, a single-step debug exception
would be pending immediately after exiting the enclave via
the EEXIT instruction. In other words, the processor in the
single-step mode treats the whole life-cycle of the enclave
execution (from enclave entry to enclave exiting) as a single
instruction. Besides, the enclave is not allowed to manipulate
the value of the TF bit. The processor guarantees this with two
properties. First, at the time of the enclave entry, the processor
stores the TF bit into a software invisible register and then
clears it, while the value of the TF bit is restored after exiting
the enclave. Second, the processor ensures that the TF bit
always remains cleared inside the enclave.

3 Threat Model

Our threat model considers the mutual distrust between the
enclave and its host application. Therefore, the threat model
consists of the following two perspectives.
• From the enclave’s view It assumes the same attack

model as other systems that leverage SGX for protection.
Specifically, the trust anchors for an enclave (developer)
are the SGX-enabled CPU and the code inside the enclave.
The rest of the software stack, including the host applica-
tion, OS, and hypervisor, is considered as untrusted. The
goal of an enclave is to prevent the leakage of its sensi-
tive information (data or/and code) both at runtime and at
rest. Thus, code secrecy mechanism [9] may be used by an
enclave to protect its private code.

• From the host application’s view It considers the en-
clave as untrusted [27, 36]. As mentioned previously,
such scenarios include third-party enclaves and potentially
buggy enclaves. The goal of the host application is to lever-
age the functionalities provided by the enclave, while at
the same time confining the enclave’s behaviors.

Out of scope The main purpose of our work is to restrict
the host-enclave interactions to specified interfaces. It lays the
basis for the establishment of the mutual distrust between the
enclave and its host application. The high-level attacks, e.g.,
the Iago attack [13], that exploits the specified interfaces, are
out of the scope. Besides, side-channel and denial-of-service

(DoS) attacks are not considered. Defending against such
attacks are orthogonal to our work.

4 System Design

From the enclave’s view, the security mechanisms provided
by SGX can be used to protect the sensitive data and code
inside the enclave. However, from the host application’s view,
there exist two types of asymmetries [27, 36] between the
enclave and its host application.
• Data access asymmetry An enclave can read and write

arbitrary memory regions of its host application, while
the memory region of an enclave is hardware-protected
by SGX. With the assistance of Intel Transactional Syn-
chronization Extensions (TSX), an enclave can even probe
the whole address space of its host application stealthily
without triggering any exceptions [27].

• Control flow asymmetry An enclave can jump to any
code location of its host application by specifying the target
address inside the RBX register, which will be used by the
EEXIT instruction. It can also forge the stack register when
leaving from the enclave to manipulate the saved context
(Section 2.1). However, the host application is not allowed
to specify the entry point when entering the enclave via the
EENTER/ERESUME instruction.
Our work is to confine the untrusted enclave for its host ap-

plication, so that the host-enclave interaction can be restricted
to the specified interfaces. This helps to establish the mutual
distrust between them.

To achieve this goal, SGXLock leverages two x86 hardware
features to efficiently eliminate the enclave-host asymmetries.
First, for data access asymmetry, SGXLock relies on Intel
MPK [24] to efficiently confine the enclave access to limited
regions of the host memory (Section 4.1). Only specific re-
gions in the host memory’s address space are accessible by the
enclave. These regions serve as parameter passing buffers for
the host-enclave interaction. Second, for control flow asym-
metry, SGXLock leverages the x86 single-step mode to ensure
that the execution continues from the predefined location after
leaving the enclave (Section 4.2).

It is non-trivial to enforce such confinements. There are two
challenges, i.e., how to block the update of the PKRU register
inside the enclave and how to protect the host application’s
saved context when leaving the enclave. We will illustrate
our solutions in Section 4.3.1 and Section 4.3.2, respectively.
Figure 1 shows the overall system architecture.

4.1 Data Access Asymmetry Elimination
To eliminate the data access asymmetry, MPK is used to
restrict the data access of an enclave to the specified regions
in its host application’s address space. For simplicity, we first
assume there is only one enclave i in the host application and
then discuss the scenario of multiple enclaves.



Host Application
(MPK Key: H)

a. Copy data to the parameter buffer
b. PKRU: {H, Ei} -> {Ei}
c. enable single-step mode
d. EENTER
.L_EEXIT:
e. PKRU: {Ei} -> {H, Ei}
f. Copy data from the parameter buffer

debug exception handler {
ASSERT(RIP == .L_EEXIT)
Disable single-step mode

}
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Single-step debug  exception

Parameter buffer
(MPK Key: Ei)
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Figure 1: The overall system architecture.

The host memory regions are assigned with the protection
key H, which is exactly the default protection key in the OS
(e.g., key 0 in Linux). SGXLock then assigns the memory
region of enclave i with a unique protection key Ei at the time
of the enclave creation. To support parameters passing for
the host-enclave interaction, SGXLock couples each TCS of
the enclave i with a piece of the host memory region, called
the parameter buffer. A parameter buffer is organized as a
stack to enable the nested host-enclave interactions. Because
a parameter buffer is coupled with each TCS, SGXLock can
support concurrency inside the enclave without having the
scalability issue. Accordingly, All the parameter buffers of
the enclave i belong to the MPK protection key Ei.

First, the host application has the access permission to pro-
tection keys {H, Ei}. This does no harm to the security of the
enclave since the content of the enclave is hardware-protected
by SGX. Second, the enclave can only access the protection
key Ei. Before the execution is transferred to the enclave i, the
access permission of the current thread is changed from {H,
Ei} to Ei via updating the PKRU register (step b in Figure 1).
SGXLock guarantees that the PKRU register is not changed
while the execution remains inside the enclave. By doing so,
the enclave cannot access the host memory regions other than
the enclave’s parameter buffer. After exiting from the enclave,
the execution resumes the host application’s original access
permission (step e in Figure 1). In this way, SGXLock elim-
inates enclave-host data access asymmetry efficiently, since
no performance overhead is introduced inside the enclave.

Multiple enclaves The support of multiple enclaves is
straightforward. First, a unique protection key is allocated for
each enclave. The memory region and the parameter buffer
of an enclave are then assigned with the enclave’s protection
key during the process of the enclave creation. Second, the
host application has the access permission to all the enclaves’
protection keys, whereas each enclave can only access its own
protection key. If the number of enclaves exceeds the maxi-
mum number of available protection keys, the virtualization
of protection keys could be leveraged [24].

About the AEX event AEX events cannot be abused by
an enclave to bypass the MPK-based data access asymme-
try elimination. First, SGXLock guarantees that the PKRU
register is not part of the processor’s extended states (See Sec-
tion 4.3.1), thus it is not saved into the enclave’s SSA frame
when an AEX event happens. Second, an enclave should be
forbidden to specify the control flow of the AEX handler
outside the enclave, considering this will compromise the
security guarantees from both the enclave and its host applica-
tion’s view. 2 Third, the PKRU register value is maintained as
part of the host application’s thread context during the AEX
event handling outside the enclave. Therefore, the execution
can reenter the enclave via the ERESUME instruction with
the original PKRU register value set.

4.2 Control Flow Asymmetry Elimination
In Section 4.1, we show how SGXLock utilizes MPK to elim-
inate the data access asymmetry. However, the design goal of
MPK is intended to provide permission control for data access.
Instruction fetching is not constrained by MPK. Hence, MPK
cannot be used to eliminate the control flow asymmetry. Thus,
the code inside the enclave can jump to arbitrary executable
locations inside the host application’s memory space after
executing the EEXIT instruction.

The root cause of the control flow asymmetry is that the
jump target of the EEXIT instruction is enclave-manipulable.
To solve this problem, SGXLock leverages the x86 single-step
mode feature to detect whether the jump target of the EEXIT
instruction matches the pre-defined location, i.e., the next
instruction after the EENTER instruction (label .L in Figure 1).

Specifically, whenever the execution gets into the enclave,
the TF bit within the FLAGS register is set (step c in Figure 1)
to ensure the pending of a single-step debug exception fol-
lows the EEXIT instruction ( in Figure 1). The corresponding
exception handler then performs the check for the jump target
(® in Figure 1). If the check passes, the execution is resumed
and continues from the pre-defined location in the host appli-
cation’s code region (° in Figure 1). Otherwise, the potential
abuse (or exploit) of the control flow asymmetry is detected.
The execution is aborted.

Same with the MPK-based data access asymmetry elimina-
tion, eliminating control flow asymmetry with the assistance
of the single-step mode introduces no performance overhead
for the execution inside the enclave.

About the AEX event On an AEX event, the processor re-
sumes the value of the TF flag from the software invisible
register and exits the enclave. Then, same as the PKRU regis-
ter, the TF flag is treated as part of the host application’s thread

2A proper mechanism to allow the enclave to get involved into the ex-
ception handling caused by itself is that the handler is put inside the enclave
and is invoked by the host application via the EENTER instruction when
handling the AEX event. This mechanism is exactly the one used by Intel
SGX SDK and is compatible with SGXLock.



context and remains set when the execution is resumed from
the AEP. Since the AEP points to the ERESUME instruction,
the TF flag is kept as set at the enclave entry.

4.3 Challenges and Solutions
We have described the main idea of adopting two x86 hard-
ware features to eliminate the enclave-host asymmetries. How-
ever, there are still some challenges to ensure that the security
enforcement of our system cannot be bypassed. In the follow-
ing, we illustrate these challenges and our solutions.

4.3.1 Challenge I: Block PKRU Update Inside the En-
clave

The PKRU register can be updated with two user-mode in-
structions, WRPKRU and XRSTOR. An untrusted enclave may use
these two instructions to extend its access permission to the
protection keys other than itself. To prevent this, SGXLock
needs to keep the PKRU register unchanged during the en-
clave execution. A similar challenge is also addressed by the
ERIM system [32]. However, the solution proposed by the
ERIM cannot be directly applied to our system. The reasons
are listed in Appendix A. To solve this challenge, SGXLock
adopts the following strategies for the XRSTOR and the WRPKRU
instruction, respectively.

XRSTOR instruction The usage of the XSAVE/XRSTOR in-
struction is intended to save/restore the current execution’s
extended states efficiently. Thus they are unavoidable inside
the enclave. However, in our design, an enclave is not allowed
to maintain the PKRU register since SGXLock requires the
PKRU register be unchanged during the enclave execution.
Besides, there is no need for an enclave to maintain its own
PKRU register value. That is because MPK cannot be used
by an enclave to provide access permission control for itself.
MPK’s permission control is based on two components: the
per-core PKRU register and the 4-bit protection key field in
the page table entry. Apparently, the latter one is out of the
enclave’s control. Thus, if an enclave leverages MPK to en-
force the permission control, the untrusted host application or
operating system can easily corrupt it.

We observed that the PKRU register is treated as part of
the enclave execution’s extended states only when the bit 9
within an enclave’s XFRM attribute field is set. Therefore,
our solution is straightforward. SGXLock guarantees that the
bit 9 within an enclave’s XFRM attribute field is never set.
Specifically, during the enclave creation, an additional check
is performed by SGXLock. If it is set, SGXLock refuses to
create the enclave. Since the XFRM attribute field cannot be
modified after the enclave creation, the XRSTOR instruction
cannot affect the PKRU register even though it occurs inside
the enclave. Note that with this method, SGXLock also guar-
antees that the PKRU register would not be affected by the
AEX event.

PAGE_ALIGN(begin_addr)
PAGE_ALIGN(end_addr)

begin_addr < end_addr - 2 N

Y

begin_addr[0:2] == 0x0F01EF

Y

begin_addr = begin_addr + 1

N

input: begin_addr/end_addr 

SUCCEEDED

FAILED

BEGIN

Figure 2: The flow chart of the embedded inspection code.

WRPKRU instruction SGXLock leverages binary inspec-
tion to prevent the occurrence of the WRPKRU instruction inside
the enclave. In some scenarios, an enclave may load or gen-
erate code at runtime for the purpose of code secrecy [9].
Our system leverages the binary inspection mechanism to
deal with both the plain enclave code and the dynamic loaded
or generated code (abbreviated as DLGC), respectively. For
the plain enclave code, SGXLock can directly check whether
there exists WRPKRU instructions while loading the code into
the enclave during the enclave creation. For DLGC, since its
content is inaccessible outside the enclave, SGXLock chooses
to embed a small piece of inspection code into the enclave
at the enclave compilation stage. Figure 2 shows the logic of
our embedded inspection code: scanning the corresponding
code region linearly to detect the occurrence of a specific byte
sequence (i.e., WRPKRU’s machine code: 0x0F01EF). At run-
time, by enforcing the W ⊕ X attribute for the enclave’s page
table entries, the host application can detect the execution of
DLGC inside an enclave. Then the inspection code will be
invoked by the host application before giving the execution
permission to the DLGC region.

As shown in Figure 2, our embedded inspection code only
includes a simple loop and can be easily implemented with
less than one hundred lines of assembly code. In fact, the
implementation of our embedded inspection code can be inte-
grated into the SGX software development kit (SDK). Thus
no development burden is imposed to enclave developers. To
ensure the usability and security of the embedded inspection
code, SGXLock made the following design choices. First,
an assembly template, that implements exactly the logic of
our embedded inspection code (See Figure 2), is provided
by SGXLock. The template only uses the registers to store
its data (including input/output) and can be instantiated by
replacing the template parameter with the specific registers.



Second, the template instance is integrated into the plain in-
enclave runtime and its input/output should always remain
inside the registers during the data transfer (from the enclave
entry to the enclave exit point). Thus the template instance
needs to be placed to the location that is close to the enclave
entry/exiting. For example, a conditional branch instruction
is inserted into the enclave entry and one branch targets for
the template instance, while an unconditional branch instruc-
tion targeting the enclave exiting is inserted into the end of
the template instance. Third, the related information of the
template instance is provided with the enclave file to assist
the verification of the template instance.

Based on the previous design, during the enclave creation,
SGXLock can verify the existence of the template instance
(i.e. inspection code). SGXLock also confirms that the tem-
plate instance is always reachable from the enclave entry
when invoked by the host application and the (input/output/im-
mediate) data never leaves the registers during the invocation
process. Always keeping data inside the registers prevents
other concurrent enclave execution from corrupting the in-
spection code’s execution state. Besides, obfuscation should
not be applied to the template instance. Doing so fails the
verification of SGXLock and the execution of DLGC would
not be allowed.

Note that, page alignment operation is performed at the
beginning of our inspection code. This ensures that the poten-
tially malicious host application can only snoop whether there
is a specific three-byte sequence within the inspected region
at the page granularity. Such information is rather limited to
leak the enclave’s sensitive information.

We have described that SGXLock can enforce no occur-
rences of the WRPKRU instruction in the DLGC of an enclave
with two components: W ⊕ X for the detection of DLGC and
the embedded code for inspection. In the following, we illus-
trate the overall workflow of the binary inspection mechanism
that targets both the plain enclave code and DLGC.

Static binary inspection It happens at the time of the en-
clave creation. First, SGXLock scans the plain enclave code
while loading it into the enclave to inspect the occurrence
of the WRPKRU instruction. If the inspection passes, the
corresponding enclave code page will be assigned with RX
permission. Besides, for the enclave page with WX permission
set, SGXLock removes its X permission and records its infor-
mation. Meanwhile, SGXLock checks whether the inspection
code is embedded inside the enclave properly. If the checking
passes, an enclave-invisible flag dlgc_allowed is set to indi-
cate the created enclave is allowed to execute DLGC. Note
that the embedded inspection code is part of the plain enclave
code and keeps RX during the enclave’s life-cycle. With the
static binary inspection, SGXLock achieves three guarantees.
First, there is no WRPKRU instruction inside the enclave code
after the enclave initialization. Second, the execution of the
DLGC inside the enclave will be detected by SGXLock (since
the executable permission has been removed.) Third, for an

enclave using DLGC, the inspection code has been properly
embedded.

Dynamic binary inspection This is triggered by the vio-
lation of W ⊕ X during the enclave execution. As an AEX
event, the violation of W ⊕ X makes the execution exit the
enclave and allow the host application to get control. First,
the host application checks whether the dlgc_allowed flag is
set and the enclave page’s original permission set has the X
permission. If both of them are satisfied, this means a DLGC
code region is executed and the dynamic binary inspection
needs to be invoked.

Specifically, the host application changes the permission
of the enclave page that needs to be inspected to read-only. 3

This prevents the concurrent enclave executions from modi-
fying the enclave page that is to be inspected. Note that the
system call is not allowed inside the enclave, thus the enclave
cannot directly manipulate the enclave’s page table entries.
Before the host application specifies a free TCS and gets into
the enclave via the EENTER instruction to invoke the embed-
ded inspection code, it changes the protection key of the SSA
frame of the TCS to the host application’s protection key (i.e.
H). Accordingly, the host application keeps the access permis-
sion of the current execution to the protection keys of both the
host application and the enclave (i.e., {H, Ei}) before entering
the enclave. This aims to prevent other concurrent enclave
execution from modifying the register values of the inspec-
tion code, which are stored into the SSA frame on an AEX
event during the execution process. Besides, as we mentioned
before, the embedded inspection code only uses registers to
store its data. Therefore, there is no window for other concur-
rent enclaves to corrupt the current execution context of the
embedded inspection code.

Then, the host application gets into the enclave to invoke
the embedded inspection code. The inspection code will scan
the corresponding page(s) according to the address informa-
tion provided by SGXLock. One bit is returned to indicate
whether the inspection passes. If the inspection fails, the host
application forbids the execution of the DLGC inside the
enclave. Otherwise, the host application assigns the corre-
sponding page(s) with RX permission and the original enclave
execution is resumed.

We can see that before invoking the inspection code, the
host application changes the permission of the enclave page
that needs to be inspected to RO. After the inspection passes,
the inspected enclave page will be assigned with RX permis-
sion by the host application. There is no time window that
the enclave page to be inspected is writable. This prevents
other concurrent enclave execution from modifying the page
to be inspected during the whole process. Thus the possible
Time-of-check to Time-of-use (TOCTOU) attack is blocked.

3In Linux, it is implemented via pkey_mprotect, which would guar-
antee the TLB coherence of the permission update.



4.3.2 Challenge II: Block Host Stack Pointer Manipula-
tion

Even though the jump target of the EEXIT instruction is con-
strained with the help of x86 single-step mode, an untrusted
enclave is still capable of controlling the value of the host
application’s stack pointer (i.e., RSP and RBP) while the ex-
ecution leaves the enclave. Even worse, considering the pa-
rameter buffer of an enclave is accessible to both the enclave
and the host application, a fake host stack can be forged by
an untrusted enclave [27]. As a result, the host application
would continue execution with a forged stack context after
the execution leaves the enclave.

Our solution SGXLock borrows the idea from keyed-hash
message authentication code (HMAC) to guarantee the in-
tegrity of the host stack pointers. Specifically, SGXLock main-
tains a global 64-bit secret value, named g_sp_key, for the
host application. Whenever the execution gets into the en-
clave via the EENTER instruction, SGXLock performs bit-wise
exclusive or (XOR) operations on the host stack pointers,
i.e., RSP and RBP, with g_sp_key, respectively. The results,
(RSP⊕g_sp_key) and (RBP⊕g_sp_key), are then stored into
the host stack. Note that this step takes place before trim-
ming the current execution’s access permission and the host
stack would be inaccessible while the execution is inside the
enclave.

Since the jump target of the EEXIT instruction is constrained
with the help of the x86 single-step mode, SGXLock is able
to perform the integrity check for the host stack pointer
when the enclave execution finishes. In detail, SGXLock uses
the current (potentially corrupted) RSP register for address-
ing to retrieve the previously stored (RSP⊕g_sp_key) and
(RBP⊕g_sp_key) from the host stack. Then, SGXLock per-
forms XOR operation on them with g_sp_key and compares
the result with the current RSP/RSP register. If their values
match, SGXLock confirms that the integrity of the host stack
pointer is preserved. Otherwise, potentially malicious behav-
ior is detected.

Besides, the execution could exit the enclave on an AEX
event and the exception handling may need the user-space
involvement (e.g., a signal handler in Linux). For this situation,
the integrity check could be performed in the corresponding
user-space handler, too.

In summary, SGXLock ensures the integrity of the
host stack pointers during the enclave execution. First,
(RSP⊕g_sp_key), (RBP⊕g_sp_key) and g_sp_key are all
stored in the enclave invisible memory region. This is en-
forced by SGXLock with MPK. Thus, an untrusted enclave
is unable to steal or tamper with these values directly. Sec-
ond, the only information known to the enclave is the plain
host stack pointers. Therefore, the untrusted enclave cannot
forge a fake stack since the value (i.e., (RSP⊕g_sp_key),
(RBP⊕g_sp_key)) to fill into the stack is unknown to the
enclave.

5 Implementation Details

We have implemented a prototype of SGXLock based on Intel
SGX SDK (v2.9.1) for Linux. The goal of our prototype is
making SGXLock transparent to enclave developers and keep-
ing backward-compatibility with legacy enclaves at source
code level as much as possible. A developer can port a legacy
enclave into our prototype with minor or even no modification.
In this section, we illustrate some implementation details.

5.1 Data Access Asymmetry Elimination
Our modification mainly targets for the SDK to support
ECALL/OCALL’s parameter passing through SGXLock’s
param_buffer. Besides, we also make minor modifications
(no more than 20 lines) to the signal handling of the Linux
kernel (See Appendix C for details).

In the Intel SGX SDK, each ECALL/OCALL definition has a
specific marshaling data structure, generated by the Edger8r
tool, to interpret its arguments. The tRTS/uRTS only uses a
void pointer for an ECALL/OCALL’s parameter passing. When
routing an ECALL/OCALL requests, the marshaling data struc-
ture is used by the edge routines of both sides to interpret the
arguments by converting the void pointer to the marshaling
data structure pointer. This design assumes an enclave can ac-
cess its host application’s memory regions arbitrarily. This as-
sumption does not hold after applying our system. Therefore,
we modified the Edger8r tool and the tRTS/uRTS to support
parameter passing of ECALL/OCALL through param_buffer.
Edger8r For the Edger8r tool, we add a wrapper data struc-
ture, ms_param_meta_t (Listing 2 in Appendix D), to enable
the uRTS to interpret an ECALL/OCALL’s marshaling data struc-
ture. Then instead of passing a void pointer, the dispatch
edge routine passes the ms_param_meta_t pointer to the tRT-
S/uRTS. The passed ms_param_meta_t pointer is finally used
by the uRTS to copy data to/from the param_buffer.
tRTS The sgx_ocalloc function of the tRTS is used by
the dispatch edge routine of the OCALL to allocate memory
regions outside the enclave for parameter passing. We modify
the implementation of sgx_ocalloc to allocate memory from
the param_buffer instead of the host stack.
uRTS When receiving an ECALL request, the uRTS chooses
a free TCS and copies the parameters to the corresponding
param_buffer by interpreting the ms_param_meta_t pointer
received from the dispatch edge routine of the ECALL. Besides,
an instance of the marshaling data structure for the ECALL is
created in the param_buffer, to interpret the parameters re-
siding in the param_buffer. Then the uRTS routes the ECALL
request to the tRTS with the address of the newly created
marshaling data structure instance as a void pointer.

When receiving an OCALL request from the tRTS, the uRTS
also receives a ms_param_meta_t pointer that points to some
area within the param_buffer. Then the uRTS copies the pa-
rameters from the param_buffer to a private memory region



based on the ms_param_meta_t pointer. Besides, an instance
of the marshaling data structure for the OCALL is created in
the private memory region to interpret the copied parameters.
Note that different from a param_buffer, the private memory
region belongs to the host application’s protection key and
thus cannot be accessed by the enclave. The uRTS maintains
a private memory for each TCS of an enclave to prevent the
possible TOCTOU attack on the OCALL parameters.

Compatibility Our modification to the SDK will disable
the support of the user_check attribute. Specifically, in Intel
SGX SDK, the pointer argument of an ECALL/OCALL can be
marked with the user_check attribute. For such a pointer, the
receiving edge routine will neither verify the pointer nor copy
the pointed buffer. The design of the user_check attribute
leaves the duty of data validation to the developer and is prone
to the TOCTOU attack. SGXLock only supports parameter
passing via the developer-invisible param_buffers. Thus, the
user_check attribute is not supported in our prototype.

5.2 Control Flow Asymmetry Elimination

The TF bit within the FLAGS register is set via the POPFQ in-
struction before the EENTER instruction. After the enclave
execution exits via the EEXIT instruction, a single-step debug
exception is triggered immediately. In our implementation, a
single handler is registered to catch the SIGTRAP signal. In the
signal handler, the jump target of the EEXIT instruction and
the integrity of the host stack pointer are checked. If the check
fails, the signal handler will report this behavior and abort
the execution. Otherwise, the TF bit in the FLAGS register of
the original context is cleared and the original execution is
resumed.

5.3 Binary Inspection

To support the code secrecy, Intel SGX SDK provides Pro-
tected Code Loader (PCL) mechanism. With the PCL mech-
anism, the user enclave code is encrypted at build time and
decrypted at runtime. To support this mechanism, a static li-
brary libsgx_pcl.a is included in the enclave and invoked
by the uRTS to decrypt user code immediately after the en-
clave creation. Our prototype provides the support for the PCL
mechanism and implements a three-stage binary inspection
mechanism.

Static binary inspection We modify the uRTS to inspect
the plain enclave code during the enclave creation. The uRTS
also checks whether our inspection code is properly integrated
into the enclave. If so, an enclave-invisible flag dlgc_allowed
is set. The uRTS is also modified to enforce the W ⊕ X prop-
erty for the enclave’s page table entries by trimming W from
the WX permission during the enclave creation.

PCL binary inspection Since our prototype enforces W ⊕
X for the enclave pages, the encrypted user enclave code does

not have the X permission after the enclave creation. Our
modified uRTS will invoke the embedded inspection code
to inspect the newly decrypted user enclave code if it exists.
Note that at this time, there is no concurrent enclave execution.
Thus our system does not need to change the corresponding
enclave page(s) to read-only or modify the protection key of
the corresponding SSA frame to the host protection key. If
the inspection passes, the modified uRTS will change the per-
mission of the enclave page(s) to RX via the pkey_mprotect
system call.

Dynamic binary inspection Since W ⊕ X is enforced for
the enclave’s pages, executing newly loaded or generated
code inside the enclave will cause a W ⊕ X violation and
trigger a page fault exception. A signal handler is registered
to catch the SIGSEGV signal. If the signal code is SEGV_ACCERR
and the fault page’s original permission is RWX, the runtime
binary inspection is triggered. First, the fault enclave page
is marked as read-only via the pkey_mprotect system call.
The embedded inspection code is then invoked by the host
application to inspect the fault page. If the inspection passes,
the permission of the fault page is changed to RX by the host
application. Finally, the original execution is resumed and
reenters the enclave via the ERESUME instruction.

6 Evaluation

6.1 Security Analysis

The goal of SGXLock is to eliminate the enclave-host asym-
metries (i.e., data access and control flow asymmetry), so
that the host-enclave interaction can be confined to the spec-
ified interfaces. Our security analysis focuses on the threats
from an untrusted enclave that aims to bypass SGXLock’s
asymmetry elimination enforcement.

Bypass data access elimination There are three methods
for an enclave to change the PKRU register value, i.e., using the
XRSTOR instruction, leveraging the AEX event and using the
WRPKRU instruction. SGXLock requires that the bit 9 of an en-
clave’s XFRM attribute field is clear and thus the PKRU register
would not be treated as part of the processor’s extended states
during the enclave execution. This blocks the first two meth-
ods since both of them manipulate the PKRU register through
the processor’s extended states. Since SGXLock ensures there
is no WRPKRU instruction existed during the enclave’s life-cycle
via the binary inspection mechanism, the third attack is also
blocked. Moreover, after handling the AEX event, SGXLock
guarantees that the enclave’s original PKRU register is resumed
when reentering the enclave’s via the ERESUME instruction.

Bypass control flow elimination SGXLock relies on the
single-step mode to check the target of the EEXIT instruction.
The TF flag is saved in a software-invisible register during
the enclave execution and resumed after exiting the enclave.
Besides, for enclave exiting due to an AEX event, the control



flow of the AEX event handling is out of the enclave’s control
and the TF flag would remain set when the execution reenters
the enclave via the ERESUME instruction. Thus, the enclave is
unable to clear the TF flag. Based on the single-step mode,
SGXLock can further verify the integrity of the host stack
pointer by adopting the HMAC-like strategy.

Case study We used three attack primitives leveraged by
SGX-ROP [27], including host memory read, host memory
write, and host stack pointer manipulation, to demonstrate the
effectiveness of SGXLock. Since there is no TSX support in
our experiment platform, we suppose the malicious enclave
has the prior knowledge to the host memory layout. As a
result, the host memory read/write primitive are detected by
our MPK-based data access asymmetry elimination mecha-
nism (Section 4.1), while the host stack pointer manipulation
attack primitive is blocked by the combination of the single-
step based control flow asymmetry elimination (Section 4.2)
and the host stack pointer integrity checking (Section 4.3.2)
mechanism.

Specifically, for host memory read/write manipulation,
when the enclave tries to read/write host memory regions
other than its parameter buffers, a SIGSEGV signal is captured
by our signal handler due to the violation of MPK’s permis-
sion restriction, and the execution is aborted. For host stack
pointer manipulation, when the enclave execution exits, a
single-step debug exception is issued and the control flow
transfers to the corresponding signal handler. Since the host
stack pointer is corrupted by the enclave, the corresponding
integrity check in the signal handler fails and the execution is
aborted.

6.2 Performance Evaluation
In this section, we focus on the performance evaluation of
our prototype to demonstrate its effectiveness. Our evalua-
tion was performed on a platform with the Intel i7-10700F
CPU (2.90GHz), which supports both SGX and MPK, and
the 16GB physical memory. The system software running on
the platform is Ubuntu 18.04.4 (Kernel v5.4.28) with SGX
driver v2.6 installed.

6.2.1 Evaluation Methodology

First, we use micro-benchmarks to measure the introduced
host-enclave interaction latency by our prototype, which is
the main cause of the performance overhead. Specifically, we
evaluate the raw latency overhead. This is introduced by the
additional interaction code, e.g., PKRU register update, single-
step mode enabling/disabling, and single-step debug excep-
tion handling. We also evaluate the performance overhead for
the parameter passing, i.e., copying to/from the parameter
buffer (param_buffer).

Second, we choose three representative scenarios, i.e., the
privacy-preserving machine learning service, the relational

Table 1: The evaluation result of the raw ECALL/OCALL
latency.

Original SGXLock SGXLock *2

ECALL 7,636 11,662 (52.7%) 9,288 (21.6%)
OCALL 5,908 9,588 (62.3%) 7,303 (23.6%)
1 Time is measured in CPU cycles.
2 SGXLock * represents our prototype with single-step mode disabled.

database, and the web server to evaluate the overhead of real-
world applications. The choice is based on three reasons. First,
they are popular scenarios for SGX that have been evaluated
in previous systems. Second, both the database system and
the web server require high-frequency system calls, which
represent the real scenarios of high-frequent OCALLs. Third, as
a data-intensive service, the machine learning service usually
passes large parameters, including model weights or inputs.
The benchmark programs used in the evaluation have been
released in the link [7].

Last, we evaluate the overhead introduced by the code
inspection mechanism.

6.2.2 Micro-Benchmarks

Raw latency overhead We implement an empty ECALL rou-
tine with no arguments 4. We then invoke the empty ECALL
routine from the host application and record the execution
time to represent the raw ECALL latency. To measure the raw
OCALL latency, we implement an empty OCALL routine with
no arguments and invoke it within the empty ECALL. Then
we record the execution time of invoking the ECALL routine
again and subtract the raw ECALL latency. Last, to evaluate
the latency introduced by the data access and the control flow
asymmetry elimination respectively, we disable the single-
step mode and perform the above evaluation again.

Table 1 shows the overall result. Our prototype introduces
52.7% overhead for the raw ECALL latency and 62.3% for the
raw OCALL latency. The control flow asymmetry elimination
contributes 31.1% and 38.7% of the result, respectively.

Note that, the latency shown in Table 1 represents the up-
per bound of the performance overhead. That’s because in
real-world applications, there are usually complex workloads
inside the worker function of the ECALL/OCALL.

To further show the raw latency overhead in practice, we
use different ECALL worker functions that have different exe-
cution time inside the enclave. We also use various numbers
of invoked OCALLs during this process. This can represent dif-
ferent types of applications. For each test, the function inside
the enclave invokes an empty OCALL without any arguments
at different frequencies. We repeat the measurement 20 times

4The empty routine means that the worker function of an ECALL/OCALL
returns immediately when it is invoked.



Table 2: The overhead under different execution time inside
the enclave and the OCALL frequency.

Frequency Execution Time
1ms 5ms 10ms 50ms 100ms 500ms 1000ms

1 0.2% 0.1% 0.1% 0.04% 0.05% 0.03% 0.03%
10 1.4% 0.4% 0.5% 0.06% 0.02% 0.0% 0.0%
100 10.8% 2.4% 1.2% 0.3% 0.1% 0.05% 0.03%
1,000 42.6% 18.0% 10.3% 2.4% 1.2% 0.3% 0.1%
10,000 61.1% 51.6% 41.5% 17.6% 10.5% 2.4% 1.2%
50,000 63.7% 61.2% 56.7% 41.6% 31.6% 10.5% 5.6%
100,000 63.9% 62.8% 59.8% 50.2% 42.5% 18.0% 10.3%

and report the arithmetic mean values. Table 2 shows the re-
sult. The execution time inside the enclave ranges from 1ms
to 1s.

The overhead is negatively correlated with the execution
time inside the enclave, while positively correlated with the
OCALL frequency. Note that in our evaluation, the OCALL is
empty. Thus the overhead represents the corresponding upper
bounds in practice. Generally speaking, the worker function
inside the enclave tends to invoke the OCALLs at low-frequency,
since the main purpose for an OCALL is to perform the system
calls (e.g. file operations). According to Gruss et al. [16],
Netflix had studied the system call rates of their cloud services
and found the highest rate is around 50,000 system calls
per second per CPU. As shown in Table 2, under the setting
that the execution time is 1s and the OCALL frequency is
50,000, the performance overhead is 5.6%. It demonstrates
the effectiveness of our system for real-world scenarios.

Parameter Passing Overhead We use the empty ECALL
and OCALL routines, with a pointer argument buf whose size
is 64MB. We use a large buffer size to make the time of pa-
rameter passing dominate the whole application’s execution,
thus omitting the raw latency overhead previously discussed.

After that, we specify the direction attribute of the buf as
[in], [out], or [in, out] and then record the time cost for
each specification, respectively. The [in], [out] and [in,
out] for an ECALL means the parameters will be copied into
the enclave, copied from the enclave and copied in both direc-
tions. The meanings of the attributes for an OCALL are similar.

Table 3 shows the result. The worst case is for the pointer
argument of an OCALL with the [in] attribute, whose overhead
achieves 26.4%. Besides, the additional parameter passing
time under the [in,out] setting is obviously longer than that
under the [in] or [out] setting. This is because it requires
two additional data copy operations, i.e., copy to and from the
param_buffer, while the others only require one operation, i.e.
copy to or from the param_buffer. Again, this evaluation only
considers the raw parameters passing overhead, which shows
the upper bound of the overhead.

One interesting finding is that a pointer argument with the
[out] attribute requires much longer parameter passing time
compared to others. Accordingly, the overhead is much lower

Table 3: The evaluation result of parameter passing. Time is
measured in milliseconds.

ECALL OCALL
[in] [out] [in,out] [in] [out] [in,out]

Original 28.0 145.5 45.6 17.9 157.0 45.7
SGXLock 32.9 150.9 55.7 22.7 161.1 54.4

Additional Time 4.9 5.4 10.1 4.8 3.1 8.7
Overhead 17.6% 3.7% 22.3% 26.4% 1.9% 18.9%

Table 4: The execution time (milliseconds) and overhead of
the machine learning service using our system.

Original SGXLock Overhead
Enclave creation 283.80 283.91 0.04%
Model loading 43.59 54.00 23.90%

Inference 1,962.10 1,970.85 0.45%
Total 2,289.49 2,308.76 0.84%

(3.7% and 1.9%, respectively). That is because the edge rou-
tines of ECALL/OCALL in the enclave side would call memset to
clear the buffer that is newly allocated for the pointer argument
with the [out] attribute. The memset function is specified
as __attribute__((optimize("O0"))), thus the compiled
memset function is not optimized and involves lots of memory
access operations.

6.2.3 Real-world Applications

Machine learning as a service We run a trained neural
network model (with around 34MB weights data) inside an
enclave. The ML model is for predicting the responses of
the cancer treatment [8]. SGX is used to protect both the
model structure/parameters and input/output. All of them are
encrypted outside the enclave and only decrypted inside the
enclave at runtime. The implementation of the ML model has
been highly optimized for SGX scenario to shorten its infer-
ence time [7]. Thus, using it for evaluation is representative
to demonstrate the effectiveness of our system. In our exper-
iment, we perform the model inference on 392 inputs (total
size is 19MB) and record the time cost of each stage. Note
that each stage is implemented as an ECALL but may perform
multiple OCALLs. The measurement is repeated 30 times and
the arithmetic median is reported.

As shown in Table 4, our prototype introduces negligible
overhead (0.84% on average). In our prototype, extra data
copies are required to transfer the ECALL parameters to the
param_buffer. As mentioned above, the size of the model
weights is about 34MB. Therefore, the overhead of the model
loading stage is relatively high, which achieves 23.9%. For
a real-world machine learning inference service, the model
loading is performed only once to serve thousands of inputs
or even more. Thus the overall overhead is acceptable, just as
shown in our experiment (0.84% for 392 inputs).



Table 5: The execution time (milliseconds) and overhead of
database operations.

Original SGXLock Overhead
INSERT 1,856,643 1,867,392 0.58%
SELECT 8,428 8,629 2.38%
UPDATE 183,271 186,740 1.89%
DELETE 182,417 182,763 0.19%

Table 6: The evaluation result of a HTTP web server.

Transfer Rate (kb/s) Overhead # of OCALLsOriginal SGXLock
1 5.94 5.69 4.21% ~742,000
2 5.93 5.7 3.88% ~742,270
4 5.9 5.7 3.39% ~742,810
8 5.93 5.67 4.38% ~743,890

16 5.92 5.68 4.05% ~744,960

Database We use a ported SGX version of the SQLite [6]
database in our evaluation. As a lightweight database en-
gine, SQLite is widely deployed in real-world applications.
Besides, the execution of SQLite involves many file oper-
ations, thus causing many OCALLs. In the evaluation, we
record the time cost of four common database operations,
i.e., INSERT, SELECT, UPDATE and DELETE, respectively.
Each operation is performed for 10,000 times and the SQL
statements are generated with SQLite’s performance testing
script (tools/speedtest.tcl). We repeat our measurements
15 times and report the arithmetic mean.

As shown in Table 5, the overhead for the four opera-
tions rangers from 0.19% to 2.38%, with an average value of
1.26%. The highest overhead comes from the INSERT opera-
tion, which is 2.38%. We find that there are 11,0338 OCALLs
and 10,000 ECALLs involved for the INSERT operations. In
other words, the frequency for the INSERT operation under
the original SDK achieves 13,092 OCALLs and 1,186 ECALLs
per second (and 12,787 OCALLs and 1,159 ECALLs per second
under our prototype). Under this high frequent switching be-
tween the host application and the enclave, the performance
overhead is (only) 2.38%.

A HTTP web server The mbedtls-SGX [4] is a ported ver-
sion of the mbedtls, which can run inside the SGX and pro-
vide an SGX-enabled TLS suite for developers. We evaluate
the performance of a simple single-thread HTTP server, which
is included in the mbedtls-SGX. The HTTP server serves a
static web page whose size is 108 bytes. We use the Apache
HTTP benchmark tool [1] to perform the evaluation. In each
test, the server will serve 1,000 requests. The concurrency
level, which represents the number of multiple requests to
serve at a time, is increased from 1 to 16 with different inter-
vals. The transfer rate, number of OCALLs, and the overhead
are collected or computed and shown in Table 6. The intro-
duced overhead is ranging from 3.39% to 4.38%.
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Figure 3: The dynamic inspection time of enclaves with dif-
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Figure 4: The result of three macro-benchmark applications
for the dynamic binary inspection.

6.2.4 Dynamic Binary Inspection

The binary inspection mechanism consists of the following
three ones: static binary inspection, PCL binary inspection
and dynamic binary inspection. Static and PCL binary inspec-
tion only introduce the one-time overhead when creating an
enclave. We report the result in Appendix B. In the following,
we present the overhead of the dynamic binary inspection.

Raw inspection overhead Specifically, we first increase
the size of the enclave code that needs to be dynamically
inspected and record the corresponding inspection time. The
enclave code size ranges from 4K to 40K. We repeat the
inspection 100,000 times for each test and then calculate the
average value. Figure 3 shows that the overhead introduced
by the dynamic binary inspection is positively correlated with
the enclave code size to be inspected. Specifically, it takes
about 9.29 us (i.e. ~26,941 cycles for the CPU used in the
evaluation) for dynamically inspecting one enclave code page.

Macro-benchmark applications We further port three
macro-benchmark applications to emulate the code secrecy
protection scenario by leveraging Intel SGX SDK’s PCL
mechanism. Moreover, PCL binary inspection is disabled.
Thus the first execution of the enclave code at runtime will
trigger the dynamic binary inspection. First, we feed each
application with a small number of inputs (thus a short exe-
cution time inside the enclave) and records their runtime per-
formance (i.e. the enclave creation time is excluded). Specifi-
cally, 4 samples for the ML service, 20 SELECT operations
for the database service and 1 request for the web server are



used. We compare the execution time of the ported version
application with the original one.

As shown in Figure 4, dynamic binary inspection intro-
duces acceptable overhead for three macro-benchmark appli-
cations even with a fraction of inputs. Note that the overhead
present here is obviously higher than real-world scenarios,
sine more inputs will be served. To this end, we also evaluate
the overhead with the same inputs used in Section 6.2.3, the
performance overhead is negligible.

7 Discussion

High-level attacks SGXLock focuses on eliminating the
enclave-host asymmetries so that the host-enclave interac-
tion can be restricted to the specified interfaces. High-level
attacks [13, 22] based on the specified interaction interfaces
(e.g., ECALL/OCALL in Intel SGX SDK [3]) are not considered.
Nevertheless, SGXLock lays a foundation for the defense
mechanism to mitigate such high-level attacks. We regard ex-
ploring the defense mechanisms for high-level attacks based
on SGXLock as our future work.

SGX2 support Intel released the 2nd generation SGX in its
IceLake platform, called SGX2. Compared with SGX1, SGX2
supports the dynamic enclave memory management. It pro-
vides three new run-time primitives for an enclave, including
enclave page allocation/deallocation, enclave page permis-
sion (EPCM) restriction/extension, and dynamic thread (TCS)
creation and destruction. Currently, our prototype implemen-
tation is based on SGX1. However, the design of SGXLock
itself is compatible with SGX2. First, the page allocation and
the dynamic threading management in SGX2 require the in-
volvement of the OS. So the host application can be aware
of the corresponding operations. Second, SGX2 enables an
enclave to modify an enclave page’s permission in the page’s
corresponding EPCM entry. It is orthogonal to SGXLock’s
access control mechanism, which relies on page tables and
the PKRU register to perform the access permission control.

Legacy enclaves support The legacy enclaves can be sup-
ported at the source code and the binary level, respectively. If
the source code is available, our prototype can keep backward-
compatibility with minor or even no modification. The only
possible required modification is to remove the user_check
attribute from the enclave code. Our experience shows that it
only requires a minor engineering effort (e.g. changing about
30 lines of code when porting the ML inference service). Be-
sides, the use of user_check is not recommended. Because
it is prone to the TOCTOU attack at design level. Similar
discussions or opinions are also expressed in other work [36].

Legacy binary enclaves can be transparently supported
if the user_check attribute or DLGC is not used by the en-
clave. Otherwise, embedding our inspection code into the en-
clave binary to support the DLGC auditing and removing the
user_check attribute are needed. They can be implemented

using the binary rewriting technique, but only by enclave de-
velopers. That is because the binary needs to be re-signed
to satisfy the remote attestation. Note that while embedding
inspection code can be easily implemented via enclave en-
try hooking (as described in Section 4.3.1), removing the
user_check attribute automatically via binary rewriting is
kind of challenging considering it depends on the enclave-
specific semantic. Exploring it is regarded as our future work.

Impact to the debugging functionality Leveraging the
single-step mode to eliminate control flow asymmetry af-
fects the normal debugging function for neither the enclave
nor its host application. As a security enhancement mecha-
nism, SGXLock is used in the production environment, where
debugging with the single-step mechanism is no need. At the
development stage, since SGXLock is transparent to develop-
ers, it could be temporarily disabled (e.g., using unmodified
uRTS) if then developers want to leverage the single-step
mode to debug the program.

8 Related Work

Untrusted enclave confinement Several mechanisms have
been proposed to confine the untrusted enclave. One proposal
is to detect the malicious actions of an enclave by monitoring
its I/O behaviors [14], which is not practical yet. Costan et
al. also proposed a solution to perform the static analysis
on the enclave code [14]. To deal with runtime generated
code, it requires all enclaves to include a standardized static
analysis framework into themselves. This brings two secu-
rity concerns, i.e., the source credibility of the static analysis
framework and the increased TCB introduced by the frame-
work. SGXJail [36] confines the enclave’s behaviors by re-
siding each enclave in a separated sandbox process. It suffers
from the scalability issue, especially for multiple enclaves
and multi-threading scenarios. SGXLock does not have such
an issue because of its in-process confinement design. Some
systems [18, 29] apply the software fault isolation (SFI) tech-
nique into the enclave to confine user code inside the enclave.
However, they do not support dynamically generated code
inside the enclave. Our system does not have this limitation.
Moreover, Zhang et al. [39] proposes a black-box detection
framework, SGX-Bouncer, for SGX enclave malware. How-
ever, enclave malware could hide its attack behavior while it
is aware of SGX-Bouncer to evade detection.

Usage of Intel MPK and SGX Intel MPK provides a
hardware primitive to implement efficient intra-process iso-
lation [17, 31, 32]. ERIM [32] leverages MPK to provide
intra-process isolation for normal applications with low per-
formance overhead. However, ERIM is not applicable to
SGX scenarios due to the hardware isolation of SGX. The
libmpk [24] system virtualizes MPK protection keys in soft-
ware so that an unlimited number of protection keys are avail-
able. The libmpk system is orthogonal to our work and its



design about protection key virtualization can be borrowed by
our system to implement the support of an unlimited number
of enclaves in the future.

SGX has been leveraged to protect user code and data in
different scenarios. For instance, VC3 [26] uses SGX to imple-
ment trustworthy data analytics in the cloud. LightBox [15]
leverages SGX to provide a highly efficient solution for mid-
dleboxes in the cloud. To facilitate the usage of SGX, different
software development kits (SDK) [2, 3, 5, 34] have been pro-
vided to the developers. Moreover, several library operating
systems (libOS) [10,12,29] have been developed to minimize
the effort of legacy code refactoring for SGX. However, all
of these SDKs and libOSes have not considered the issue of
untrusted enclaves. SGXLock can be integrated into them to
address this issue.

Attacks towards SGX and security enhancements for
SGX Researchers have proposed different classes of at-
tacks towards SGX. Most of them are side-channel based
attacks. A representative type of attack is controlled-channel
attacks [11, 35, 37]. Another class of attacks is based on the
software vulnerabilities inside the enclave [19, 21]. For in-
stance, Khandaker et al. [19] systematically summarized the
attack surface of the host-enclave interaction interfaces, from
the host application’s view.

Accordingly, security enhancement mechanisms [23, 30]
have been introduced to enhance the security guarantees. To
defend against controlled-channel attacks, T-SGX [30] relies
on the TSX hardware feature to suppress the occurrence of
page faults inside the enclave. Besides, some defense mecha-
nisms [20, 28, 40] are proposed to address the vulnerabilities
inside the enclave code. These security enhancement mecha-
nisms can collaborate with SGXLock to strengthen the mutual
distrust relationship between an enclave and its host applica-
tion.

9 Conclusion

In this paper, we propose an efficient and scalable defense
mechanism to confine an untrusted enclave’s behaviors. The
threats of an untrusted enclave come from the enclave-host
asymmetries, i.e., the data access asymmetry and the control
flow asymmetry. Our solution leverages two x86 hardware
features, i.e., Intel MPK and x86 single-step mode, to break
the data access and control flow asymmetries, respectively.
We have implemented a prototype system. The evaluation
shows the efficiency and effectiveness of our system.
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A Challenges of adopting ERIM’s design to
block PKRU update inside the enclave

The solution proposed by the ERIM cannot be directly applied
to our system for the following reasons.

1 /******** wrapper of WRPKRU ********/
2 xor %ecx, %ecx
3 xor %edx, %edx
4 mov $PKRU_DISALLOW_TRUSTED, %eax
5 WRPKRU // %PKRU <= %eax
6 //the inserted code is as follow
7 cmp $PKRU_DISALLOW_TRUSTED, %eax
8 je .Lcontinue
9 syscall exit

10 .Lcontinue:
11 // execution continues...
12

13 /******** wrapper of XRSTOR ********/
14 XRSTOR
15 // the inserted code is as follow
16 bt %eax, $0x9
17 jnc .Lcontinue
18 syscall exit
19 .Lcontinue:
20 // execution continues...

Listing 1: The wrappers of WRPKRU/XRSTOR in ERIM

CI-1) The register value could be changed after WRP-
KRU/XRSTOR instructions. ERIM leverages the wrap-
pers for WRPKRU/XRSTOR instructions for a safe PKRU update.
As shown in Listing 1, a few instructions are inserted after
WRPKRU/XRSTOR instructions to check whether the PKRU reg-
ister is updated as expected. The assumption is that the value
of the EAX register between the WRPKRU instruction (line 5)
and the check of the EAX value (line 7) cannot be changed.
The same assumption applies to the XRSTOR (line 14) and the
following check routine (line 16). However, this assumption
does not hold in our scenario. When the enclave execution is
interrupted on an AEX event and is going to exit the enclave,
the program states of the execution would be stored into the
enclave’s SSA frame by hardware. The SSA frame resides
inside the enclave and is software visible. Other enclave ex-
ecutions, if existing, then can corrupt the program states of
the interrupted execution by modifying the content of the
corresponding SSA frame.
CI-2) The dynamically loaded code inside the enclave could
be encrypted. Besides, the dynamically loaded and runtime-
generated code make the problem even harder. Some enclaves
may load or generate code at runtime for the purpose of code
secrecy [9]. For instance, an enclave developer may want
to protect its proprietary code. So he/she chooses to deploy
the proprietary code in the ciphertext. A small piece of the
code loader is included in the enclave to load and decrypt
the proprietary code after the enclave creation and the remote
attestation. The hardware isolation of SGX prevents the host
application’s inspection mechanism, such as the interception
mechanism proposed in ERIM [32], from inspecting the newly
loaded or generated code.
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Figure 5: The performance overhead of static and PCL binary
inspection with different enclave code size.

CI-3) The occurrence of the XRSTOR instruction is unavoid-
able inside the enclave. One intuitive thought is to forbid
the occurrence of WRPKRU/XRSTOR instructions inside the en-
clave. However, SGX leaves the switching of the execution’s
program states to the software (i.e., enclave code) when the
execution crosses the enclave boundary via the EENTER/EEXIT
instruction. Thus, XSAVE/XRSTOR instructions are usually used
by enclave to efficiently save/restore the extended states of
the execution. The occurrence of the XRSTOR instruction is
unavoidable inside the enclave.

B The overhead of static and PCL binary in-
spection

The static and PCL binary inspection mechanisms are only in-
voked when creating an enclave. To evaluate the performance
overhead, we use Intel SGX SDK’s SampleEnclave and Sam-
pleEnclavePCL in our evaluation, respectively. Specifically,
we increase the enclave code size and record the correspond-
ing enclave creation time (with or without static/PCL binary
inspection). Figure B shows the result. We can see the static
and PCL binary inspection mechanisms introduce no more
than 2% and 4% performance overhead for the enclave cre-
ation, respectively.

C Kernel Modifications

Issues of the signal handler Whenever invoking a signal
handler, the Linux kernel will override the access permission
of the current thread to its initial setting (only access to the
protection key 0). This indicates that the kernel assumes the
(userspace) signal handler stack belongs to the protection key



1 // ECALL definition
2 public void ecall_pointer_in_size(
3 [in, size=len] void *ptr, size_t len);
4

5 // generated by Edger8r
6 // marshaling data structure for arguments
7 typedef struct ms_ecall_pointer_in_size_t {
8 void* ms_ptr;
9 size_t ms_len;

10 } ms_ecall_pointer_in_size_t;
11

12 // generated by our modified Edger8r
13 // wrapper data structure of ECALL/OCALL's
14 // marshaling data structure
15 typedef struct ms_buf_meta_t {
16 size_t offset;
17 size_t size;
18 int in_out;
19 } ms_buf_meta_t;
20 typedef struct ms_param_meta_t {
21 void* ms;
22 size_t size;
23 ms_buf_meta_t* arr;
24 size_t arr_size;
25 size_t ret_offset;
26 size_t ret_size;
27 } param_meta_t;

Listing 2: The ms_ecall_pointer_in_size_t is the marshal-
ing data structure generated by Edger8r according to the
argument attributes of the ECALL definition (Line 3). The
ms_buf_meta_t and ms_param_meta_t are wrapper data struc-
tures of ECALL/OCALL’s marshaling data structure to enable the
uRTS to copy the parameters from/to the param_buf. Specifi-
cally, ms_buf_meta_t is used to describe the pointer member
of the marshaling structure (e.g., Line 9). ms_param_meta_t
provides the overall description of the marshaling structure.

0. However, during invoking a signal handler, the kernel will
access the signal handler’s stack (e.g., for frame setup) with
the thread’s original access permission (i.e. the PKRU register
value). This brings up the functional issue (i.e. permission
violation) when the thread has no permission to the protection
key zero.

In our prototype, this can happen in two cases. First, the
enclave execution exits on an AEX event, and a signal handler
is then invoked (e.g., for the dynamic binary inspection). Sec-
ond, the execution leaves the enclave via the EEXIT instruction
and a signal-step debug exception is immediately triggered.
The corresponding signal handler is invoked to check the
jump target of the EEXIT instruction.

Solution We make minor modifications (no more 20 lines
of code) to the Linux kernel. When accessing the signal han-
dler stack, the kernel will be assigned with the access per-
mission to the protection key 0 temporarily, no matter what
its current permission is. Specifically, we mainly modify two
functions.
• handle_signal Before it calls setup_rt_frame to set up

the stack frame for the signal handler, the PKRU regis-
ter is updated to enable the access to the protection key
0. The function setup_rt_frame is responsible for sav-

ing a copy of the current thread’s context (including the
PKRU register) into the signal handler’s stack. There-
fore, after returning from the setup_rt_frame, the function
handler_signal updates the saved PKRU register in the
copy with its actual value.

• SYSCALL_DEFINE0(rt_sigreturn) This is the system
call to return from the signal handler and restore the orig-
inal context. It calls the function restore_altstack after
restoring the original context. Therefore, the PKRU regis-
ter is updated to enable the access to the protection key 0
before invoking the restore_altstack function.

D Wrapper data structure for the Edger8r
tool

The code snippet in Listing 2 shows the wrapper data structure
for the Edger8r tool (Section 5).
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