
Harvesting Developer Credentials in Android Apps

Yajin Zhou†, Lei Wu†, Zhi Wang‡, Xuxian Jiang?

†North Carolina State University ‡Florida State University ?Qihoo 360
{yajin_zhou, lwu4}@ncsu.edu, zwang@cs.fsu.edu, jiangxuxian@360.cn

ABSTRACT
Developers often integrate third-party services into their apps. To
access a service, an app must authenticate itself to the service with
a credential. However, credentials in apps are often not properly or
adequately protected, and might be easily extracted by attackers. A
leaked credential could pose serious privacy and security threats to
both the app developer and app users.

In this paper, we propose CredMiner to systematically study the
prevalence of unsafe developer credential uses in Android apps.
CredMiner can programmatically identify and recover (obfuscated)
developer credentials unsafely embedded in Android apps. Specif-
ically, it leverages data flow analysis to identify the raw form of the
embedded credential, and selectively executes the part of the pro-
gram that builds the credential to recover it. We applied CredMiner
to 36,561 apps collected from various Android markets to study the
use of free email services and Amazon AWS. There were 237 and
196 apps that used these two services, respectively. CredMiner dis-
covered that 51.5% (121/237) and 67.3% (132/196) of them were
vulnerable. In total, CredMiner recovered 302 unique email login
credentials and 58 unique Amazon AWS credentials, and verified
that 252 and 28 of these credentials were still valid at the time of
the experiments, respectively.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection—Unauthorized access

Keywords
CredMiner; Information Flow; Static Analysis; Amazon AWS

1. INTRODUCTION
In recent years, mobile apps have become hugely popular with

millions of apps in every major app store and tens of billions of
accumulated downloads. However, building an app is still a com-
plicated task that demands an intuitive UI design and a reliable and
scalable back-end infrastructure. To that end, developers often in-
tegrate third-party services into their apps. For example, Amazon
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
WiSec’15, June 24–26, 2015, New York, NY, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3623-9/15/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2766498.2766499.

1 .method public static SendMailInBackground
2 new-instance v3, Lcom/pompeiicity/funpic/Email;
3 const-string v7, "fitt*****@126.com"
4 const-string v8, "jed****"
5 invoke-direct {v3,v7,v8},Lcom/pompeiicity/funpic/Email;->
6 <init>(Ljava/lang/String;Ljava/lang/String;)V
7 ...
8 .end method

Figure 1: An Example of Embedded Plaintext Credential

S3 (Simple Storage Service) is a popular cloud storage solution for
developers to store user data in the cloud without maintaining their
own infrastructures. In addition, free email services are frequently
used to send crash reports or customer feedback to app developers.
To facilitate the integration, these services conveniently provide de-
velopers with free SDKs [5] and ready-to-use libraries [10], as well
as recipe-style sample code for them to follow [4].

To use a service, the developer often needs to sign up and obtain
a developer credential to authenticate to the service. The credential
uniquely identifies the developer (or the app) for accounting and
access-control purposes. Cryptographic keys and username/pass-
word pairs are the two most common forms of developer creden-
tials. To authenticate an app, a simple but utterly unsafe solution is
to directly embed the plaintext credential in the app. Figure 1 shows
a real world example of this neglectful practice we discovered dur-
ing our experiments. More cautious developers apply simple trans-
formation or obfuscation to hide their credentials in the apps. Un-
fortunately, such transformation or obfuscation can be readily re-
versed, manually or even programmatically. For example, some
developers encrypt their credentials with a symmetric-key crypto-
graphic algorithm (e.g., AES), but leave the plaintext keys in their
apps.

A leaked credential can compromise all the data protected by it,
posing serious threats to the security and privacy of both the de-
veloper and the users. For example, a leaked Gmail credential can
be used to log into many Google services, such as Gmail, Google
Driver, Google Docs, Calendar, Google Analytics, etc. It can also
be used to send spam and phishing emails spoofed from the devel-
oper. Moreover, security-insensitive developers often reuse their
usernames and passwords across different services, giving the at-
tacker an opportunity to compromise those services as well. Simi-
larly, leaked cloud storage credentials allow the attacker to access
sensitive user data, in certain cases, the data for all the users. The
consequences are further exacerbated by the often large installation
bases of vulnerable apps.

In this paper, we propose a system called CredMiner to system-
atically study the prevalence of unsafe developer credential uses.
CredMiner can identify the insecure handling of developer creden-
tials and automatically recover the embedded ones. It first pre-

filters the apps to exclude those that do not contain interesting li-
braries (we consider a library to be interesting if it contains func-
tions that accept plaintext credentials. Likewise, we call these func-
tions the interesting functions.) For each selected app, CredMiner
locates the calls to the interesting functions, and searches back-
wards for the sources of the credential using the static, backward
program slicing [28, 38]. The resulting program slice contains all
the Dalvik instructions (i.e., the bytecode of an Android app) nec-
essary to reconstruct the credential from its sources. CredMiner
then uses an execution engine to run the program slice forwardly to
automatically recover the credential.

CredMiner’s backward slicing algorithm works on the disassem-
bled Android bytecode. More specifically, we first manually iden-
tify every method in the interesting libraries that takes a creden-
tial in the parameter. We call these methods the sink methods.
For example, to send an email with the JavaMail library, the de-
veloper needs to instantiate, with the username and password, the
javax.mail.PasswordAuthentication class. Accordingly, the
constructor of this class is a sink method. The parameters for this
method thus contain the plaintext credential at run-time. From each
call site to a sink method, CredMiner recursively backtracks the in-
structions that touch these parameters. It starts with the registers
for the interesting parameters 1, and reversely follows the def-use
chains to add new registers and instructions to the tracking set. This
process stops when it reaches the instructions that supply the raw
form of the credential. We call these instructions the source in-
structions, and the enclosing method the source method. For ex-
ample, the constant-string instructions at line 3 and 4 in Fig-
ure 1 are the source instructions, and sendMailInBackground is
the source method. After locating all the source and sink methods,
CredMiner generates a program slice from the source methods to
the sink methods. The slice consists of all the necessary Dalvik
instructions (in the Smali format [13]) to reconstruct the creden-
tial. CredMiner has an execution engine that can interpret Smali
instructions and emulate selected API functions of Android system
libraries (e.g., java.lang.String.append(char)). To automat-
ically reveal the credential, we execute the generated program slice
forwardly with the execution engine. The engine returns the final
inputs to the sink methods, which contain the plaintext developer
credential. For example, it returns the strings in Line 3 and 4 of
Figure 1 as the credential because the intermediate instructions in
the slice do not change their values. Finally, we validate whether
the recovered credential is still valid or not.

We have implemented a prototype of CredMiner and used it to
study the usage of developer credentials in 36,561 apps collected
from the official and alternative Android app stores. We focused
our study on two types of credentials, email accounts and Amazon
AWS/S3 credentials. CredMiner could be easily extended to sup-
port other types of credentials. After pre-filtering, the sets of can-
didate apps consisted of 237 and 196 apps for these two types of
credentials, respectively. CredMiner further discovered that 51.5%
(121/237) and 67.3% (132/196) of these candidate apps were vul-
nerable. Some of the vulnerable apps are hugely popular with more
than 10,000,000 downloads from the official Google Play store.
Additionally, CredMiner extracted 302 unique email login creden-
tials (an app may use several email accounts) and 58 unique Ama-
zon AWS credentials in total. Our validation showed that 252 and
28 of these credentials were still valid at the time of the experi-
ments, respectively.

Our further analysis of the vulnerable apps revealed the worri-
some practice of inadequate developer credential protection in An-

1Unlike the stack-based standard Java bytecode, the Dalvik byte-
code is register-based.

droid apps. First, nearly 79.5% of the vulnerable apps that use
Amazon AWS do not employ any protection of their credentials.
The credentials are simply embedded in the apps in the plaintext.
We suspect this disconcerting failure is the result of developers fol-
lowing the sample code in the (old) AWS SDK, which uses the
same insecure practice. We even found several vulnerable apps
that seem to have copy-and-pasted the insecure sample code di-
rectly. Therefore, it is important to demonstrate the best practice
in the sample code, instead of the quick-and-dirty ways to use the
API. Second, some developers protect their credentials with sim-
ple transformation (e.g., string encoding) or weak obfuscation that
can be easily reverse-engineered. Third, even though some services
provide solutions to secure the credentials, these solutions are often
not used or are used improperly. For example, Amazon supports a
mechanism called token vending machine (TVM) to securely au-
thenticate apps [3]. Unfortunately, the temporary user credentials
obtained through TVM are often improperly configured and have
much higher privileges than necessary.

In summary, this paper makes the following contributions:

• We propose CredMiner, a system that can identify vulnera-
ble Android apps that have inadequate developer credential
protection, and automatically recover these (obfuscated) cre-
dentials.

• We have implemented a prototype of CredMiner and applied
it to 36,561 apps downloaded from the official and third-
party Android app stores. Our experiments showed that Cred-
Miner is effective in harvesting developer credentials in An-
droid apps.

• We systematically study the prevalence of unsafe developer
credential uses, and analyze the potential causes of these in-
secure practices.

The rest of this paper is structured as the following: we first in-
troduce the necessary background information and the threat model
in Section 2, and present the design and evaluation of CredMiner in
Section 3 and 4, respectively. We then discuss potential improve-
ments to CredMiner in Section 5, followed by the related work in
Section 6. Finally, we summarize the paper in Section 7.

2. BACKGROUND AND THREAT MODEL
In this section, we briefly introduce the key concepts of Amazon

AWS and the JavaMail library to provide necessary background
information for CredMiner, and then present the threat model.

2.1 Amazon AWS
Amazon AWS offers several services to developers, such as stor-

age, database, and analytics. We use the storage service, Amazon
S3 (Simple Storage Service), to illustrate the key concepts of the
Amazon AWS credential and user authentication. Amazon S3 is
a cloud storage infrastructure to store and retrieve flexible amount
of data. Developers interact with Amazon S3 through well-defined
APIs and do not need to worry about details of the data storage.
Data in Amazon S3 is organized into buckets (similar to disk par-
titions). The developer can further create folders and files in a
bucket. To access the data stored in Amazon S3, an app needs
to authenticate itself with an AWS account.

Each customer of Amazon AWS (i.e., the app developer in this
case) has a root account, a privileged account that can access all
the subscribed AWS services. The root account can create con-
strained subordinate accounts, called IAM user credentials, through
the IAM (Identity and Access Management) service. The developer

get_token(uid, key)

 encrypted temporary credential

Anonymous TVM

S3 Buckets

temporary credential

AWS
Security
Token

Service

Developer
Code

TVM
Client

Android
App

register_device(uid, key)

Device

STS
Credential

Figure 2: Anonymous TVM Architecture and Interactions

can constrain the access rights for IAM credentials to the minimal
permissions necessary for the app. Nevertheless, it is unsafe and
inflexible to embed the root account or IAM user credentials in
an app: first, they can be easily extracted from the app as demon-
strated by CredMiner. The leaked credential immediately gives the
attacker all the permissions granted to the account. This includes
the right to access the app users’ stored data and potentially more.
Second, all the app users share the same credential without proper
isolation between them. This allows the users to access each other’s
data. Third, it is difficult to revoke an embedded root or IAM cre-
dential should it be compromised, the developer has to release a
new version of the app and wait for all the users to upgrade. These
issues are applicable to other similar services as well.

To address those issues, Amazon provides AWS Security Token
Service that can create temporary security credentials derived from
an AWS account (for brevity, we call the parent account the STS
credential.) A temporary credential consists of an access key ID, a
secret access key, a session token, and an expiration time. The max-
imum lifetime of a temporary credential is currently 36 hours. By
default, a temporary credential inherits the permissions of the par-
ent STS credential. It is thus critical to confine the permissions of
the STS credential. The best practice is to create a constrained IAM
credential as the STS credential, and never use the root credential
for it. AWS Security Token Service can be used in many different
ways. Amazon proposes the token vending machine (TVM) archi-
tecture to address the aforementioned issues.

In essence, TVM introduces another layer of indirection so that
the long-term developer credentials (i.e., the root and IAM creden-
tials) are not exposed to the app. As shown in Figure 2, the de-
veloper runs a TVM server in the cloud. Each app first registers
its device to the TVM server. A device is uniquely identified by a
UID and a key. To obtain a temporary credential, the app sends a
get_token command to the TVM server together with its UID and
key. The TVM server then requests the AWS Security Token Ser-
vice to create a temporary credential and returns it to the app. The
temporary credential is tied to the TVM’s STS credential. This tem-
porary credential can then be used to access the Amazon S3 service,
such as to read files in a bucket. A temporary credential has lim-
ited lifetime. The app has to request a new one if it expires. AWS
supports both anonymous TVM and identity TVM. The major dif-
ference is that identity TVM requires the extra steps for the app user
to register and login to the TVM service. Identity TVM allows cus-
tomizing permissions for individual users and keeping track of the
app usage (for simplicity, we mainly use anonymous TVM as the
example in this paper.) TVM can address all the aforementioned
issues: first, the STS credential and other developer credentials are
never exposed to the app. It is only used by the TVM server to
communicate with Amazon AWS. Moreover, a temporary creden-
tial has limited lifetime. Even if leaked, it is much less risky than
a compromised developer credential. Second, the TVM server can
attach policy objects to a temporary credential to further control its
permissions. For example, TVM can confine each app instance to
its own subdirectory in a bucket, preventing it from accessing other
apps’ data. Third, a temporary credential expires in a few hours.

1 public class Mail extends javax.mail.Authenticator {
2 public Mail(String user, String password) {
3 this();
4 _user = user;
5 _password = password;
6 }
7
8 public PasswordAuthentication getPasswordAuthentication(){
9 return new PasswordAuthentication(_user, _password);

10 }
11 }

Figure 3: Suggested Usage of JavaMail in Android Apps

There is no need to release a new version of the app and wait for
users to upgrade in order to replace the compromised credential. In
addition, each app user uses a unique temporary credential. It is
much easier to revoke individual credentials.

TVM is a major improvement over embedding plaintext or ob-
fuscated developer credentials in the app. It represents one viable
solution to securely handle developer credentials. However, it is
more complicated than those simple-but-insecure practices. Our
experiments with a large number of apps show that developers of-
ten make mistakes in the deployment of TVMs. A common pitfall
is that the STS credential has more privileges than necessary. These
excessive permissions are inherited by temporary credentials. For
example, CredMiner discovered several cases where a temporary
credential can be misused to access other users’ data. A related
issue is that developers often fail to attach (correct) policy objects
to temporary credentials in order to strictly separate the data from
different users.

2.2 JavaMail Library
JavaMail is a popular framework to build email clients in Java. It

has been ported to the Android platform [10]. App developers often
use this library to send emails in the background. To authenticate to
a mail service, the app extends the javax.mail.Authenticator
class and overrides its method getPasswordAuthentication, as
shown in Figure 3. This method returns an object of javax.mail.
PasswordAuthentication initialized by the account name and
the password . After authentication, the app can send emails using
the SMTP protocol. This is the suggested way to use JavaMail in
an Android app [12].

2.3 Threat Model
We assume an adversary model where an attacker can download

a large number of Android apps. There exist multiple open-source
crawlers that can automatically download apps from both Google
Play and alternative Android markets [2, 36]. After downloading
these apps, the attacker aims at recovering developer credentials
embedded in these apps for further attacks (e.g., to collect user data
stored in the cloud). In particular, the attacker can use an Android
emulator (Google provides one based on QEMU, the ubiquitous
emulator) to monitor every executed instruction and memory ac-
cess by the app to recover the developer credentials. In this paper,
we focus on studying the prevalence of unsafe developer credential
handling, and consider concrete follow-up attacks out of the scope
of this work.

3. SYSTEM DESIGN
In this section, we describe the design of CredMiner, specifically,

how to select candidate apps, how to identify the source and sink
methods of the credentials, and how to recover and validate the
embedded credentials.

Select
Candidate

Apps

Identify
Data

Sources

Reconstruct
Credentials

Validate
Credentials

App
Repository

ReportsApps

Figure 4: CredMiner Work Flow

3.1 Overview
CredMiner aims at recovering developer credentials from An-

droid apps. Figure 4 shows the overall work flow of CredMiner.
Given a number of apps in the repository, CredMiner first selects
the candidate apps that use one of the interesting libraries (i.e.,
libraries that use plaintext credentials). For each candidate app,
CredMiner performs a data flow analysis to identify the sinks and
the sources of the credentials. A program slice is generated con-
necting the sources to the sinks. CredMiner then tries to recon-
struct those credentials by selectively executing the program slice.
At last, we manually verify whether the credentials are still valid.
CredMiner works on the disassembled Android apps in the Smali
format [13]. As such, it does not require the source code of the
app, and is compatible with apps downloaded from Google Play
and alternative Android app stores. In the rest of this section, we
illustrate each step in detail.

3.2 Select Candidate Apps
We pre-filter the app repository to exclude apps that do not con-

tain interesting libraries. It seems that this can be achieved by
simply extracting the package and class names from the app and
compare them to those in an interesting library. However, this
simple approach leads to false negatives because of code obfus-
cation. For example, ProGuard [11] is recommended by Amazon
to obfuscate the AWS SDK [15]. Even though an obfuscator can-
not change names in the system libraries, it can safely mingle the
package/class names of third-party libraries. One possible solu-
tion is to use bytecode similarity to decide whether a package of
the app matches one of the interesting libraries [26, 31]. However,
this process is time consuming since it involves pair-wise compar-
ison between the interesting libraries and all the apps in the reposi-
tory. Instead, CredMiner employs the following heuristics: popular
obfuscators like ProGuard do not change constant strings. These
strings give us a strong hint of the original package. However, this
heuristic will miss apps obfuscated by tools capable of encoding
strings (e.g., DexGuard [8]). We use the package’s structural lay-
out to handle this case. Specifically, the number of classes inside
a package and their hierarchy are quickly compared to each inter-
esting library for a potential match. We then leverage the slow-but-
precise bytecode similarity to determine whether the match is real
or not. The string comparison is quite effective. We seldom need
to use the more complicated similarity comparison. For each iden-
tified (obfuscated) library, we further map its classes and methods
to the original ones through package similarity. Note that we only
need to compare the similarity for the identified apps. Scalability is
not an issue here since the number of such apps is far less than the
total number of apps. By de-obfuscating the app, we can locate call
sites of the sink methods in the app (Section 3.3). CredMiner takes
the following two steps to map obfuscated classes and methods,
respectively.

Mapping Obfuscated Classes: this step de-obfuscates the classes
of a package in the app by locating their counterparts in the origi-
nal library. We use bytecode similarity for this purpose [26,31,44].
Specifically, we construct a string representation for each class (we
call it the class signature) and compare it to those of the interesting
libraries. A quality class signature should retain the semantics of

the class and resist to code obfuscation. In CredMiner, the class
signature consists of the number of class fields and the method sig-
natures. A method signature in turn consists of the number and
types of parameters, the return type, and its instruction stream. To
tolerate differences in the compiler’s register allocation and obfus-
cated class names, we exclude register names and the names of non-
system classes in the signature. However, system class names are
included because they contain rich semantics and obfuscators often
keep them intact. For instance, instruction invoke-direct{v10,
v12},Ljavax/mail/internet/InternetAddress;-><init>
(Ljava/lang/String;)Vwill be reduced to invoke-direct{2},
(Ljava/lang/String;)V. Non-system class name javax.mail.
internet.InternetAddress is excluded from the string repre-
sentation (with obfuscation, the name will be converted to a non-
descriptive one like La/b/c/d), while system class name java/
lang/String is retained. After generating class signatures, we
use n-gram to calculate the similarity between classes in the pack-
age and the identified library. Matched class pairs have the highest
similarity. Since this process has been discussed thoroughly in the
previous work [26, 31, 44], we do not elaborate it further.
Mapping Obfuscated Methods: In the second step, we further
de-obfuscate the methods of matched classes. We first try to deter-
mine the mapping by comparing constant strings in the methods.
Our experience shows that this simple approach is very effective as
constant strings are usually not obfuscated. If it fails to determine
a match, we compare method signatures with the n-gram similar-
ity, and leave the more precise control-flow-graph-based similarity
comparison as a backup [31]. If a mapping still cannot be decided,
we preform the manual analysis as the last resort. This rarely hap-
pens in practice.

After the above two steps, we can reliably identify whether an
app contains an interesting library, and, if so the mapping between
the obfuscated classes/methods and the original ones. In the rest
of this paper, we assume that classes and methods have been de-
obfuscated and only use their original names.

3.3 Identify Data Sources
After selecting the candidate apps, CredMiner uses static back-

ward program slicing to locate the sources for an embedded creden-
tial and generates a program slice which contains all the instruc-
tions affected by those sources. The nature of a source can help us
to decide whether the app is vulnerable or not. For example, if the
credential originates from user inputs (e.g., the EditText widget),
the app likely is not vulnerable since the credential is not embedded
in the app.
Locating Sink Methods For each interesting library, we first iden-
tify sink methods in the library, i.e., the methods that accept a
plaintext credential in the parameters. For example, the constructor
of javax.mail.PasswordAuthentication is a sink method for
JavaMail because it accepts the email account name and password.
Similarly, com.amazonaws.auth.BasicAWSCredentials’s con-
structor is also a sink method because it accepts the Amazon AWS
access key ID and secret access key. Note that this process requires
manual efforts and domain knowledge of the interesting libraries.
After identifying sink methods, we search for invocations of those
methods in the app. That is, we locate where those methods are

8 invoke-virtual {p0, v0}, Ljava/lang/String;->charAt(I)C
9 move-result v2
10 invoke-virtual {v1, v2}, Ljava/lang/StringBuilder;->
 append(C)Ljava/lang/StringBuilder;
11 add-int/lit8 v0, v0, -0x1
12 goto :goto_0

13 :cond_0
14 invoke-virtual {v1}, Ljava/lang/StringBuilder;->
 toString()Ljava/lang/String;
15 move-result-object v0
16 return-object v0

6 :goto_0
7 if-ltz v0, :cond_0

1 new-instance v1, Ljava/lang/StringBuilder;
2 invoke-direct {v1}, Ljava/lang/StringBuilder;-><init>()V
3 invoke-virtual {p0}, Ljava/lang/String;->length()I
4 move-result v0
5 add-int/lit8 v0, v0, -0x1

1 invoke-direct {p0}, Ljava/lang/Object;-><init>()V
2 new-instance v0, Lcom/amazonaws/a/f;
3 const-string v1, "AERDAY6ORJ5GMLDIAIKA"
4 invoke-static {v1}, Lcom/triposo/droidguide/world/image/PhotoUploadService;->
5 shuffle(Ljava/lang/String;)Ljava/lang/String;
6 move-result-object v1
7 const-string v2, "IwUUusIZOvgewUlONOXMuvtQw4tvIZM+JAEkpOI4"
8 invoke-static {v2}, Lcom/triposo/droidguide/world/image/PhotoUploadService;->
9 shuffle(Ljava/lang/String;)Ljava/lang/String;
10 move-result-object v2
11 invoke-direct {v0, v1, v2}, Lcom/amazonaws/a/f;-><init>(Ljava/lang/String;Ljava/lang/String;)V
12 new-instance v1, Lcom/amazonaws/services/s3/a;
13 invoke-direct {v1, v0}, Lcom/amazonaws/services/s3/a;-><init>(Lcom/amazonaws/a/a;)V
14 iput-object v1, p0, Lcom/triposo/droidguide/world/image/PhotoUploadService;->
15 s3Client:Lcom/amazonaws/services/s3/a;
16 return-void

.method private constructor <init>()V

.method private static shuffle(Ljava/lang/String;)Ljava/lang/String;

false

truegoto

v0
v0

v1

v1
v1

v2
v2
p0

p0
p0
p0
p0
p0

v2
v2

v2
v2

1

2

3

Start

Stop

2

Figure 5: An Example of Backtracking (Tracked Registers are Annotated to the Left of Interesting Instructions.)

called. At run-time, the inputs to a sink method contain plaintext
credentials. If the credential is obfuscated, it must have already
been reversed when it reaches the sink methods at run-time. Con-
sequently, we could backtrack from call sites of a sink method to
locate sources of the credential.
Backtracking Credentials After locating a call site of a sink
method, we perform a static backward program slicing to back-
track the credential to its sources [38]. Figure 5 uses an exam-
ple to illustrate this process. At each step, CredMiner maintains
a set of registers that are currently being tracked (we call them
the tracked registers.) The tracking process starts from the in-
puts to the sink method. For example, register v2 on line 11 of
the <init> method is one of the tracked registers (the other one
is register v1 on the same line). It is an input to the construc-
tor of com/amazonaws/a/f. This class is obfuscated from com/
amazonaws/auth/BasicAWSCredentials, whose constructor is
a sink method that accepts Amazon AWS credentials. The class
name has been internally reversed to the unobfuscated form during
the candidate app selection (Section 3.2). Our backtracking algo-
rithm recursively follows the use-def chain over the app’s control
flow graph. It first continues in the current basic block. When it
reaches the boundary of the basic block, it follows to all the ba-

sic blocks that can reach the current one (in Figure 5). If the
tracked register is the return value of a method invocation, Cred-
Miner follows into the callee (¬). When the algorithm reaches the
entry point of a method (line 1 of the shufflemethod), CredMiner
finds all the call sites of this method and continues the process in
the callers if any parameter of the callee is in the tracked register
set (®). During this process, the registers that are currently being
tracked are updated according to instruction types. In the follow-
ing, we describe how this works for different types of instructions.

• Irrelevant instructions: if an instruction does not affect the tracked
registers, CredMiner simple skips it and moves backward.

• Instructions that overwrite tracked registers: for an instruction
that overwrites one or more tracked registers, CredMiner adds
the source registers of this instruction to the set of tracked regis-
ter, and removes the destination registers from it. For example,
instruction move p1,vx moves the value from register vx to reg-
ister p1. If p1 is being tracked, CredMiner adds vx to the set and
remove p1 from it. An interesting case is the iget-object in-
struction, which retrieves the value of a class field to the destina-
tion register. For example, the iget-object,p1,vx,myClass;->

myField instruction moves vx->myField into the register p1.
vx is an object of class myClass. In this instruction, there is no
source registers that CredMiner can add to the set since vx->myField
is an object field. To address that, for each iget-object in-
struction, CredMiner finds its corresponding iput-object in-
structions and adds their source registers to the set. To con-
tinue the previous example, register vy will be added if Cred-
Miner finds the following instruction in the app: iput-object,
vy,vx, myClass; ->myField. In this sense, our slicing algo-
rithm can be considered as field-sensitive.

• Method invocation instructions: if the return value of an invoked
method (the callee) is in the tracked register set, this method
invocation instruction should be processed. Specifically, Cred-
Miner follows into the callee, and continues backward slicing
from the return instruction. Figure 5 contains an example of
this case. The return value of the shuffle method is in the
tracked register set at line 10 of the <init> method. CredMiner
follows into shuffle and continues backward slicing from the
return-object instruction (line 16) of this method. However,
CredMiner does not track into a callee if it is a method of a sys-
tem class. Instead, CredMiner models the transformation from
the return value to the parameters of the method. For example,
the instruction on line 15 of the shuffle method invokes the
system method (Ljava/lang/StringBuilder->toString), we
model the data flow of this method and directly propagate the re-
turn value to the parameter (v1 in line 14).

Finding Source Methods A source method is a method where
backtracking stops. In other words, the algorithm has found the
instructions that provide the raw forms of the credential. Specif-
ically, backtracking stops when one of the following conditions
holds. First, it meets a constant-string instruction and the des-
tination register of this instruction is in the set (e.g., line 7 of the
<init> method in Figure 5). Second, the return value of certain
system methods is stored to a tracked register. These methods usu-
ally return data from external sources, such as a file, a network con-
nection, and the keyboard input. For example, if the return value of
the android.widget.EditText.EditText.getText method is
stored to a tracked register, we know that the credential originates
from user inputs and stop backtracking.

3.4 Reconstruct Credentials
After locating the raw credential, CredMiner automatically re-

constructs the credential if it originates from a constant string. This
is particularly useful if the credential is encoded or encrypted since
we do not need to write an app-specific tool to reverse-engineer the
credential. CredMiner uses an execution engine to execute the pro-
gram slice. The engine maintains an internal representation of Java
objects, and interprets the Android bytecode on them. There are
several challenges need to be addressed.

First, the program slice is an incomplete subset of the app code.
It may rely on objects created out of the slice. We solve this prob-
lem by creating mock objects on demand. Specifically, CredMiner
creates an internal representation for the object, and interprets its
constructor on the object. We use simple default values for the pa-
rameters (e.g., an empty string for a string parameter).

Second, even though the engine can create objects on demand,
there are still some cases it cannot handle, especially when the
class of the object is deeply coupled with the Android framework.
For example, the android.content.context class is too com-
plicated for the engine to handle. Fortunately, the engine focuses
on reconstructing credentials, instead of executing arbitrary slices.

1 def StringBuilder_append_C_Ljava_lang_StringBuilder(arg_regs):
2 #get the register value. Register names are in the
3 #parameter arg_regs, v1, v2 for instance
4 arg1_value = vm.get_reg_value(arg_regs.split(",")[0].strip())
5 arg2_value = vm.get_reg_value(arg_regs.split(",")[1].strip())
6 #check the type
7 if type(arg1_value) != str or type(arg2_value) != str:
8 print ("[x] [%d] we expect an (string, string) here. But"
9 "the actual type is (%s,%s)" % (get_linenumber(),

10 str(type(arg1_value)), str(type(arg2_value))))
11 return False
12 #emulate java.lang.StringBuilder.append(char)
13 arg1_value += arg2_value
14 vm.put_reg_value(arg1, arg1_value)
15 return True

Figure 6: Emulated java.lang.StringBuilder.append(char)

Most common instructions in our program slices transform and ma-
nipulate strings.

Third, how to handle system libraries is another challenging prob-
lem. In CredMiner, the execution engine has built-in knowledge to
emulate the semantics of selected system methods. Figure 6 shows
how the java.lang.StringBuilder.append(char) method is
emulated in Python (the engine is implemented in this language.)
CredMiner keeps the Dalvik VM registers in a dictionary, indexed
by the register names. A Java string object is represented by a
Python string. The code in Figure 6 first retrieves two registers
from the register file (line 4 and 5). It then checks their types to
ensure that they both are strings. If the type check is passed, Cred-
Miner emulates the append(char) method by concatenating two
strings together (line 13). Finally, the result is stored in the desti-
nation register.

Last but not least, the semantics of the Dalvik instructions should
be maintained during the interpretation. In particular, the execution
engine takes the following actions according to instruction types.
a) control flow transfer instructions: for an unconditional control
flow transfer instruction (e.g., goto), the target is encoded in the
instruction as a label. CredMiner extracts this label and changes
the execution flow to the target instruction. For a conditional con-
trol flow transfer instruction (e.g., if-ne), CredMiner first tests the
condition and only jumps to the target if the condition satisfies.
b) ALU instructions: ALU instructions are straightforward to han-
dle. CredMiner performs the ALU operations and saves the results
into destination registers. c) object field manipulation instructions:
these instructions are probably the most common instructions in an
app. As mentioned earlier, the related Java object may not exist
in the program slice when the instruction is executed. CredMiner
creates a mock object on demand and then manipulates its fields.
d) method invocation instructions: for a method invocation instruc-
tion, CredMiner resolves the callee and invokes it. If the callee is a
non-static method, the this object may not exist. CredMiner cre-
ates a mock object for this if necessary. Moreover, each method
has its own register file. CredMiner allocates a new Python dictio-
nary for the register file when entering a method, and discards it
when the method returns.

3.5 Validate Credentials
The final step of CredMiner is to check whether the recovered

credentials are still valid. To this end, we leverage the original app
as much as possible. Specifically, we run the app in an Android
emulator and monitor its execution. We set a watch point at the
sink methods of the interesting libraries, and compare the run-time
parameters, which contain the actual plaintext credentials, to those
recovered by CredMiner. We also monitor the interaction between
the app and the remote server to check whether the authentication

succeeds or not. If it succeeds, the credential is still valid. In some
cases, we control the emulator to drive the app down to a selected
path. For example, some apps embed a large number of email ac-
counts, and randomly select one for use. We control the returned
random number to force the app to try each email account. Over-
all, this manual process is rather time consuming (without Cred-
Miner’s static analysis, it cannot scale to tens of thousands apps in
our repository.), but it has virtually no negative impact to the se-
curity and privacy of the developer’s account. The validation of
Amazon TVM credentials are more involved than this and is de-
scribed in Section 4.

4. EVALUATION
To evaluate the effectiveness of CredMiner, we collected a num-

ber of apps from Google Play and several alternative Android app
stores in Asia. The apps from Google Play were downloaded from
February to June 2014, and the apps from other stores were down-
loaded in June 2014. Table 1 shows the statistics of these apps. In
total, there were 36,561 distinct apps (we consider apps with dif-
ferent SHA1 hash to be different.) All the results reported in this
section were based on the experiments conducted in July 2014, un-
less otherwise stated.

Table 1: Distribution of Collected Apps

Google Play Alternative Markets
of Apps 21, 092 15, 479
Percentage 57.67% 42.33%
of Total Apps 36, 571
of Distinct Apps 36, 561

4.1 Overall Results
CredMiner mainly focuses on two types of credentials, email ac-

counts and Amazon AWS accounts. Among the apps we collected,
there are 237 and 196 candidate apps that use the JavaMail library
and the Amazon AWS SDK, respectively. CredMiner reveals that
51.5% (121/237) and 67.3% (132/196) of these candidate apps are
vulnerable. Table 2 shows the distribution of the vulnerable apps
among different app stores. Interestingly, 96.9% (128/132) of the
vulnerable apps that leak Amazon AWS credentials come from
Google Play. This is probably because Amazon AWS has a low
market share in Asia. We have reported our findings to the devel-
opers of these vulnerable apps. Most of these apps do not have an
official channel to report vulnerabilities. In this case, we tried to
contact them through the customer support emails listed on the app
store. We only received very few responses from the developers.
In two exceptional cases, the developers were able to acknowledge
the issues within 24 hours with fixes planned in the near future.
Because of the scarcity of responses, we omit the vulnerable app
names and obfuscate other details in the paper to protect user pri-
vacy.

Table 2: Distribution of Vulnerable Apps

Category of Credentials Google Play Other Stores Total
Email Credentials 65 56 121
Amazon AWS Credentials 128 4 132

4.2 Email Credentials
The first category of the studied apps uses free email services.

Our data set has 237 candidate apps in this category, and 121 (51.1%)
of them were found to be vulnerable. In particular, 65 of these
vulnerable apps were downloaded from Google Play with 11 apps
having more than 50,000 downloads.

 0

 50

 100

 150

 200

 250

126Mail Gmail Custom SinaMail QQMail 163Mail

231
224

36

5
18

8 7 7 6 4 4 4

Number of Credentials

Number of Valid Credentials

Figure 7: Leaked Credentials from Different Providers

There are a number of reasons why some candidate apps are not
vulnerable. First, the imported JavaMail library is not used in the
app. It may have been included as the testing code, but the de-
veloper forgets to remove it before releasing the app. Second, the
library is not used to send emails but for other purposes. For exam-
ple, the javax.mail.internet.InternetAddress.validate
method checks whether an email address is in a valid format or
not. We observed several apps in this case. Third, the credential
comes from user inputs, not the app itself. This is the most com-
mon reason that a candidate app is not vulnerable.

Credentials Breakdown CredMiner recovered 302 unique email
credentials. This number is larger than that of the vulnerable apps
because an app may include several email credentials. In fact, we
found one app that had 130 embedded email accounts. At the time
of our experiments, 252 of these 302 accounts were still valid. At-
tackers could use these credentials to access all the stored emails,
and to send spam or phishing emails as the developers. It’s worth
noting that email credentials can often login into other services
from the same provider. For example, most Google services use
the Gmail account to authenticate a user. Consequently, the data
stored in those services are in jeopardy due to the leaked passwords.
We notice that there is a trend for service providers to deploy 2-
step verification. This significantly reduces the risk of leaked pass-
words. Though, it is questionable whether the same developer that
embeds plaintext passwords in the app would care to use it. Fig-
ure 7 shows the number of total and still-valid credentials ordered
by email providers. Most of these accounts belong to 126.com (a
free email provider in China), from which 96.9% accounts were
still valid. We also recovered 18 Gmail credentials, but only 5 of
them (13.8%) were still valid. In addition to free email services,
we detected 18 email accounts that were using their own servers,
including Amazon Simple Email Service.

Vulnerable Malware When analyzing these apps, we came up
with an interesting thought to see whether we can recover email cre-
dentials from malware samples. We expect malware authors to be
more careful in protecting their email accounts since these accounts
may reveal their real identities, expose network traces, and provide
evidences to the law enforcement. We collected 1,404 malware
samples from two sources, Android Malware Genome Project [46]
and a mobile malware sharing website [7]. Surprisingly, CredMiner
recovered 8 email credentials and 1 of them was still valid after
around 3 years. This sample came from Android Malware Genome
Project, which contains Android malware collected from August
2010 to October 2011. In addition, only 2 of these vulnerable sam-
ples protect their accounts with custom string encoding schemes.
The main purpose for malware to use email services is to send the
stolen private information, such as SMS messages, recorded back-
ground voices, and contacts, to the attacker.

public DefaultMail(String toMail, String subject, String body) {
 this.emailAccount = new String[]{
 "iengnathgran@126.com", "tsiudaschn@126.com", "yvababstvenu@126.com",
 "phtreddrick@126.com", "cqcancinor@126.com", "xpmonohanschwa@126.com",
 "tfkleinb@126.com","vcolganbird@126.com", "dsimentals@126.com",
 "jnconole@126.com", "tdlneebarria@126.com","pbmammenj@126.com",
 ...
 };
 this.emailPassword = new String[]{
 "qpvrbjfenx", "hpfbpkttq", "cflvfmbus",
 "fphwxnpci", "tcjgsruld","vknswwfbh",
 "qinxbxwtpm", "moprvyirmt", "fbfrtxvhw",
 "ynueooihyl", "wkpiqjxfk", "ynxxtjccs",
 ...
 };
}

Figure 8: Some of the 130 Email Credentials in Case Study III

Case Study I This is a popular app from Google Play with more
than 1,000,000 downloads. Its main function is to securely hide
user pictures with a user-provided pin. If the user forgets the pin,
a link will be sent to his/her email to recover the pin. JavaMail
is used to send this email. The email credential for this purpose
is obfuscated through encryption and encoding. Specifically, it is
first encrypted using AES in the CTR mode. The encrypted cre-
dential is then encoded again in Based64, and the resulting blob
(K/JFSGE54oU=) is embedded in the app. However, the key to de-
crypt the blob is only encoded in Base64, and can be easily re-
trieved. In addition, the initial vector for AES is simply a con-
stant string directly embedded in the app. After decoding and de-
crypting the blob, CredMiner shows that the plaintext password is
abc123**. It is sadly interesting to see that the developer spent
such efforts to protect a very weak password. In addition, we also
found a plaintext email credential (username: handy****@gmail.
com, password: key_******) from the app. However, this creden-
tial is not used by the app. We suspect that it might have been used
by the previous versions of the app, until the developer decided to
protect the credential. Another app from the same developer em-
ploys a similar strategy to protect its email credentials.
Case Study II This is a spyware downloaded from Google Play
in March 2014. It has since been removed from Google Play. The
app stealthily tracks the SMS messages received and sent by the
victim. It uses Amazon Simple Email Service to send them to a
specific email account. The Amazon AWS credential to send those
emails is directly placed in the app, without any protection. It was
still valid at the time of our experiments, even after the app had
been removed from Google Play.
Case Study III We downloaded this app from an alternative An-
droid app store in June 2014. The app includes a feature to collect
user feedback through emails. Instead of using the default email
app for this purpose (the developer might consider this hurting the
user experience since it requires to switch to the default email app
and back), the app sends these emails in the background using an
embedded account. Surprisingly, we discovered 130 different email
accounts from this app, all in the plaintext. They all belong to the
same free email service provider, 126.com, and are still valid then.
The app randomly picks one to use. We suspect this is the de-
veloper’s effort to circumvent the service provider’s quote on how
many emails one account can send in a period. Figure 8 shows
some of those email accounts.

4.3 Amazon AWS Credentials
The second category of the studied apps uses Amazon AWS cre-

dentials. An Amazon AWS credential consists of an access key ID
and the related secret access key (they are semantically similar to
a username and password.) It may be shared by multiple services
from Amazon, depending on the subscription and the configuration.
There are 196 candidate apps in our data set using its SDK, and 132

(67.3%) of them are vulnerable. Most invulnerable candidate apps
import the SDK but never use it. There are also a small number
of apps that employ the recommended secure practice and thus are
not vulnerable. However, the majority of these candidate apps are
vulnerable. Most of these apps (96.9%) came from Google Play.
Particularly, 24% of the vulnerable apps (32 apps) have more than
50,000 downloads. In total, CredMiner recovered 58 unique AWS
credentials, and 28 of them are still valid during our experiments.
Comparison to PlayDrone A system called PlayDrone [36] can
also detect AWS credentials in Android apps. It uses simple string
matching to locate plaintext AWS credentials which are “pairs of
strings matching AKIA[0-9A-Z]{16} and [0-9a-zA-Z/+]{40}
that are at most 5 lines apart." This simple approach suffers from
both false negatives (e.g., encoded/obfuscated credentials) and false
positives (e.g., strings that accidentally match the criteria). In com-
parison, CredMiner’s approach is more generic and reliable. For
example, CredMiner can automatically reconstruct certain encod-
ed/obfuscated credentials, and it works on other types of credentials
as well. In this experiment, we compare the effectiveness of Play-
Drone and CredMiner. Specifically, we implemented a prototype
of PlayDrone, and applied it to our candidate apps. PlayDrone suc-
cessfully recovered credentials from 105 apps, while CredMiner
recovered credentials from 126 apps, a 20% improvement. All the
apps detected by PlayDrone were also detected by CredMiner. It’s
worth noting that both CredMiner and PlayDrone missed 6 vulner-
able apps. Five of these apps employ the anonymous token vending
machine (Section 2.1), and the other one uses a custom protocol to
protect the credential. We will discuss these apps in detail in the
next paragraph.
Anonymous Token Vending Machine Amazon advises devel-
opers to protect their credentials with the token vending machine
(TVM) [3]. Instead of using an embedded credential, the app can
obtain a temporary credential from a remote TVM server. This
architecture protects the long-term developer credentials from be-
ing leaked. However, our experiments show that developers often
mis-configure the TVM servers, leaving their apps vulnerable. Par-
ticularly, developers often place the URL to the remote TVM server
directly in their apps. An attacker can send a request to this URL to
obtain a temporary credential for his/her malicious purposes. The
privilege of this credential is inherited from the developer’s STS
credential (Section 2.1). If the developer fails to constrain the priv-
ilege of the STS credential, the attacker’s credential has more power
than necessary. For example, we configured our own TVM server
by following the (insecure) tutorial provided by Amazon [14]. It
turns out that temporary credentials generated by our server could
be used to fully access the Amazon S3 service (e.g., to read/write all
the files in our buckets). We suspect some candidate apps that use
TVM have similar issues because developers are known to copy
and paste the sample code. To that end, we manually analyzed
some popular candidate apps that use anonymous TVM. The re-
sults are not optimistic. We will describe one of the examples in
the following.

This particular app from Google play is very popular. It has ac-
cumulated more than 5,000,000 downloads. The app backs up the
user data to the Amazon S3 cloud using a temporary credential ob-
tained from an anonymous TVM server. For each user, it creates a
unique UID, and stores his/her data under a directory associated to
this UID. If the temporary credential is not properly confined, the
attacker might be able to enumerate the UIDs and access the app
users’ files. To confirm whether this is the case or not, we created
two testing accounts using the app, and retrieved their UIDs from
the app’s sqlite database. We then obtained a temporary credential
for one of the testing accounts. This credential allowed us to access

GET api/v2/teams/11087/uploadInfo HTTP/1.1
Accept: application/json
Content-Length: 0
hudl-authtoken: bbMzU24E-kumPr2kcO2xKg
User-Agent: com.hudl.hudroid,3.4.2.2
...

HTTP/1.1 200 OK
Cache-Control: private, s-maxage=0
Content-Type: application/json; charset=utf-8
...

{"contentServerId": 104, "bucket": "b-hudlvid",
 "username": "0AXX8X0VTKD22S3QZK82",
 "password": "sLOa74jl+JpDausTs/CCjkT6sifNsd/EkudrwAbP" }

AWS Credential

Figure 9: HTTPS Request and Response to Get Amazon Credential

the other account’s files. This experiment demonstrated that the
developer failed to properly configure the TVM server to strictly
isolate different app users. Considering the huge popularity of this
app, this vulnerability poses serious threats to the user privacy. In
short, even though Amazon TVM has a reasonably secure design,
it is not widely used, let alone used securely.

Case Study I This is a popular travel guide app. It has been
downloaded in Google Play for more than 100,000 times. The app
uses Amazon S3 to store its users’ pictures. To protect its AWS
credential, the app encodes the credential by reversing its order.
For example, the access key ID AKIAIDLMG5JRO6****** is en-
coded to ******6ORJ5GMLDIAIKA. CredMiner successfully iden-
tified and recovered the encoded credential. We reported this issue
to the app’s developers. They promptly acknowledged the issue
and pointed out that the credential can only be used to upload user
pictures and they are monitoring the credential for abuse.

Case Study II This app allows sports teams to upload, share, and
study training videos. The user has to register an account on the
developer’s website to use the app, or signs in with a demo account
to test-drive the app. When the demo account is used, the app re-
trieves an Amazon credential from its server. This credential can
be easily obtained and misused by an attacker. CredMiner flags
this app as suspicious because the credential comes from the Inter-
net. We manually analyzed this app. When a request is sent to a
special URL bearing the demo account’s authentication token, the
server returns a JSON document that contains the AWS credential.
Figure 9 shows the request sent to the server and the returned cre-
dential. Fortunately the developer has fixed this vulnerability in the
latest update.

4.4 App Developer’s Security Practice
In this section we try to categorize app developers’ insecure prac-

tices in protecting their credentials, and discuss potential reasons
behind these practices.

First, many developers do not protect their credentials at all.
Their credentials are directly embedded in the app without any pro-
tection. Among the 132 vulnerable apps that use Amazon AWS,
105 (79.5%) apps belong to this category. Second, some devel-
opers do understand the risk and take precautions to protect their
credentials through encryption or encoding. However, the keys to
reverse the process are stored in the app, often in plaintext. This
is only marginally better than the first practice because it is really
straightforward to reverse-engineer Android apps. Another 21 vul-
nerable apps that use Amazon AWS belong to this category. Third,
some developers follow the best practice recommended by service
providers to protect their credentials. However, these mechanisms

are often complicated and the developers lack the necessary knowl-
edge to deploy them in a secure way. For example, developers who
use Amazon TVM often fail to specify the least privilege for tem-
porary credentials.

We further speculate the potential reasons for the developers’ in-
secure practices. First, insecure sample code provided by service
providers can mislead developers. For example, Amazon used to
provide sample code that directly embeds the Amazon AWS cre-
dential. Developers often copy-and-paste the sample code into their
own apps without giving it a second thought, even though there is a
warning saying that the sample code is not secure. We discovered
several such apps whose packages have the same variable names,
classes names, and configuration file names as the sample code.
It is a relief to see that Amazon has removed the insecure sample
code from the recent releases of the SDK (version 2.0.5). Second,
there is no clear instructions about how to use the SDKs securely.
One example is the Amazon token vending machine (TVM). The
app developer could follow the instructions given by Amazon to
set the privilege for temporary credentials [14]. Unfortunately, the
sample policy given in that document is not secure – it allows a
temporary credential to access all the resources. Simple, clean, and
secure document would help developers to secure their systems.
For complicated systems like Amazon TVM, it would also help
if the providers could include them as a default configuration of
their services (instead of asking developers to run their own TVM
servers).

4.5 Other Cloud Services
Although we focused our study on two types of credentials, Cred-

Miner works for other types of credentials as well. In the follow-
ing, we briefly describe the evaluation results with the Microsoft
mobile service [9] and the Aliyun OSS [1]. Both services are sim-
ilar to Amazon S3. Apps use them to synchronize user data to the
cloud. However, these two services are not popular in our data set
with less than 10 apps in total. Six of these apps are vulnerable. For
example, one app stores the user’s email address and Facebook au-
thentication token in the Azure cloud storage. The insecurely em-
bedded Azure credential allows an attacker to retrieve these data.
In particular, the Facebook token can be used to access the user’s
Facebook account without further authentication.

5. DISCUSSION
CredMiner systematically mines developer credentials in An-

droid apps to study the prevalence of improperly handled creden-
tials. In this section, we discuss possible improvements to Cred-
Miner.

First, CredMiner uses call graphs and control flow graphs to
compute the sources of credentials. However, due to the object-
oriented nature of the Java programming language and the event-
driven design of Android apps, it’s challenging to construct these
graphs precisely. For example, the actual class of a virtually in-
voked method or the exact type of a Java object sometimes can
only be determined at run-time. Our system employs a simple
but conservative class-hierarchy based points-to analysis to gen-
erate approximate call graphs and control flow graphs. This sim-
ple analysis works for our system, but may not perform well for
more complicated cases. A precise points-to analysis can be inte-
grated into our system to improve the overall preciseness of Cred-
Miner. Moreover, the event-driven design of Android apps and the
Java reflection could break call graphs. Similar to the previous sys-
tems [24,30,45], we manually connect some of these methods, such
as Thread.start and Thread.run. CredMiner also partially sup-

ports Java reflection by resolving class and method names that are
simple strings.

Second, CredMiner does not handle native libraries in an app.
It thus will miss credentials hidden inside native libraries. We did
a quick measurement of how many apps may belong to this cate-
gory. Our experiment is based on the observation that the native
code eventually needs to call methods in the SDK to access the ser-
vice, especially for the services that do not provide a native SDK.
We can identify such apps by searching their native code for the
class/methods names of the SDK and of other Java classes that call
the SDK (they can be used to indirectly call the SDK.) There are
only 3 apps in our data set having the native code that use the Ama-
zon AWS service. This is an underestimation because we cannot
handle obfuscated class/method names in the native code. Our cur-
rent prototype cannot handle these apps.

Third, our execution engine selectively executes the program
slice to reconstruct credentials. This proves to be rather conve-
nient, especially if the credentials are encoded or encrypted, since
we don’t need to write app-specific tools for this task. For our pur-
pose, there is no need to build a complete, generic execution engine.
The current prototype is tailored to credential reconstruction. Man-
ual efforts may still be necessary, especially if the program slice
contains complicated system classes which our prototype cannot
handle. Our experience with a large number of apps shows that
operations in these program slices are mostly related to string ma-
nipulation and transformation, which can be readily handled by our
prototype.

Finally, how to securely protect developer credentials in apps
is a challenging problem. Most obfuscation techniques will even-
tually be reverse-engineered. In the following, we try to propose
several possible mitigation measures to alleviate this issue: a) App
store operators could deploy CredMiner to detect vulnerable apps
and warn the developer when such an app is uploaded to the store.
This does not fundamentally fix these vulnerabilities, but at least
pushes the developer to pay more attention to this issue. b) Sam-
ple code released by vendors should demonstrate only secure and
correct ways to use their SDKs, and avoid misleading developers
with quick-and-dirty code. For example, an early version of the
sample code for the Amazon AWS SDK embeds the credential di-
rectly in the app. CredMiner detected a few apps that seemed to
copy-and-paste the insecure sample code. It is encouraging to see
that the insecure sample code has been removed from the recent
versions of the SDK. c) Architectures like Amazon TVM provide
reasonably secure ways to authenticate users. Their correct deploy-
ment should be documented and demonstrated simply and cleanly.
It would also help if they can be packaged as turnkey solutions
with minimal configuration and maintenance from the developers.
d) Developers should consider alternative and more secure ways to
implement some features. For example, instead of using free email
services to send crash reports, they can use third-party crash analy-
sis libraries [6] or send the reports with the default email app.

6. RELATED WORK
Static Analysis of Android Apps Our system leverages static
analysis to detect vulnerable Android apps. Static analysis has
been widely used by previous systems for various purposes: first,
it has been applied to detect malicious apps. DroidRanger [49]
and RiskRanker [25] are two such systems. DroidRanger uses app
permissions and behavior footprinting to detect new instances of
known malware. RiskRanker instead relies on reachability analy-
sis to detect unknown malware. One aspect shared by CredMiner
and RiskRanker is that both systems use backward program slic-

ing to locate source methods. Second, static analysis has been
used to detect capability leaks or confused-deputy vulnerabilities in
third-party or pre-installed apps [27]. Such systems include Com-
Droid [17], Woodpecker [24], CHEX [30], Amandroid [37], and
SEFA [39]. For example, CHEX statically detects component hi-
jacking vulnerabilities that can be exploited to gain unauthorized
access to protected or private resources. A system that can auto-
matically patch such vulnerable apps has also been proposed [41].
The most related work in this category is probably SAAF [28], a
static analysis framework for Android that supports program slic-
ing. CredMiner uses a similar data flow analysis, but it also has an
execution engine to selectively execute program slices in order to
reconstruct credentials.

Similarity Comparison of Android Apps CredMiner uses code
similarity to de-obfuscate interesting libraries. Code similarity has
been employed to detect repackaged Android apps, such as Droid-
MOSS [44], Juxtapp [26], PiggyApp [43], AnDarwin [18], and
DexDiff [31]. For example, DroidMOSS generates the fingerprint
for an app with fuzzy hash. Juxtapp [26] computes the app simi-
larity based on the hashes for k-grams of the opcodes. CredMiner
uses not only opcodes but also other components of classes and
methods to calculate the similarity. DexDiff compares the simi-
larity of the AOSP (the Android Open Source Project) apps and
the pre-installed apps in a third-party phone to systematically audit
the vendor customization. CredMiner uses a similar signature as
DexDiff. However, we do not include class and method names in
the signature since they may have been changed by code obfusca-
tion. Overall, the basic ideas of Android code similarity are similar
but differ in their purposes and details.

Detection of Vulnerable Apps Many Android apps have secu-
rity issues due to developers’ poor security practices. First, user
data could be leaked to open interfaces in Android, such as con-
tent providers. ContentScope [45] is a system that can system-
atically detect content leak and content pollution vulnerabilities.
Second, an empirical study [19] of Android apps shows that app
developers often do not use cryptographic APIs securely. About
88% of the studied apps make at least one mistake. Our experi-
ence also confirms this observation. For example, we find some
apps that use constant numbers as the initial vector of AES. Third,
MalloDroid [22] reveals that the SSL/TLS library is frequently im-
properly used by Android apps, leaving these apps vulnerable to
the man-in-the-middle attack. SMV-HUNTER [35] is proposed
to detect SSL/TLS man-in-the-middle vulnerabilities using static
and dynamic analysis. CredMiner also aims at exposing vulner-
able apps. However, we focus on detecting apps that leak devel-
oper credentials. A recent system called PlayDrone [36] performs
a large scale survey of Android apps in Google Play. It can detect
embedded plaintext Amazon AWS credentials with simple string
matching. CredMiner uses a more comprehensive approach. It can
automatically detect and recover transformed or obfuscated creden-
tials. Our evaluation shows that CredMiner can detect about 20%
more vulnerable apps than PlayDrone in our data set.

Detection of Privacy Leaking Apps Smartphone privacy has at-
tracted lots of attention nowadays. Earlier research discovered that
user privacy could be leaked through third-party apps on the An-
droid and iOS platforms. For example, TaintDroid [21] uses dy-
namic taint analysis to detect privacy leaks in Android apps, while
PiOS [20] targets the iOS platform. Several systems [16,29,32,40,
42, 47, 48, 48, 50] have been proposed to mitigate this threat. They
either extend the Android framework to provide fine-grained per-
mission control, or repackage apps to avoid changing the frame-
work. For example, Aurasium interposes the interaction between

apps and system libraries to regulate the access to the private user
data [40]. In-app ad libraries have also been reported to leak private
information [23]. To address that, AdDroid separates the advertise-
ment functionality from the host app [33] , while AdSplit moves
the advertisement code into another process [34]. CredMiner dif-
fers from these efforts in identifying vulnerabilities that may leak
developer credentials.

7. SUMMARY
In this paper, we aim at studying the prevalence of unsafe devel-

oper credential uses. Leaked credentials could compromise the pri-
vacy of the user data and even disrupt the apps totally. We have pre-
sented the design, prototype, and evaluation of CredMiner. Cred-
Miner leverages static backward program slicing to identify the raw
formats of the credentials and then uses an execution engine to au-
tomatically reconstruct the embedded credentials. We have applied
our system to 36,561 apps. The results showed that 51.1% (121
of 237) of the apps that use free email services, and 67.3% of the
apps (132 of 196) that use the Amazon AWS service were vulner-
able. CredMiners recovered 302 and 58 unique email and Amazon
AWS credentials, respectively. Among them, 252 and 28 creden-
tials were still valid at the time of experiments. The existence of a
large number of vulnerable apps as well as the poor security prac-
tices by the app developers reflect the severity of this threat and the
urgent need to address it.

Acknowledgements We would like to thank our shepherd, David
Barrera, and the anonymous reviewers for their insightful com-
ments that greatly helped improve the presentation of this paper.
We also want to thank Yu Wang, Huaguo Shi, Chiachih Wu for the
helpful discussion. This work was partially supported by Qihoo
360 when the first author was an intern there. Any opinions, find-
ings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views
of the company.

8. REFERENCES
[1] Aliyun OSS. http://www.aliyun.com/product/oss/.
[2] Android Apps Crawler. https:
//github.com/mssun/android-apps-crawler/.

[3] Authenticating Users of AWS Mobile Applications with a
Token Vending Machine . https:
//aws.amazon.com/articles/4611615499399490.

[4] aws-sdk-android-samples. https:
//github.com/awslabs/aws-sdk-android-samples.

[5] AWS SDK for Android.
http://aws.amazon.com/sdkforandroid/.

[6] BugSense. https://www.bugsense.com/.
[7] contagiominidump.
http://contagiominidump.blogspot.com/.

[8] DexGuard. https://www.saikoa.com/dexguard.
[9] Get started with Mobile Services.
http://azure.microsoft.com/en-
us/documentation/articles/mobile-services-
android-get-started/.

[10] javamail-android.
https://code.google.com/p/javamail-android/.

[11] ProGuard. http://developer.android.com/tools/
help/proguard.html.

[12] Sending Emails without User Intervention (no Intents) in
Android. http://www.jondev.net/articles/Sending_

Emails_without_User_Intervention_(no_Intents)
_in_Android.

[13] Smali. https://code.google.com/p/smali/.
[14] Token Vending Machine for Anonymous Registration -

Sample Java Web Application.
http://aws.amazon.com/code/8872061742402990.

[15] Using ProGuard with the AWS SDK for Android. http://
mobile.awsblog.com/post/Tx2OC71PFCTC63E/Using-
ProGuard-with-the-AWS-SDK-for-Android.

[16] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan.
MockDroid: Trading Privacy for Application Functionality
on Smartphones. In Proceedings of the 12th International
Workshop on Mobile Computing System and Applications,
2011.

[17] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing Inter-Application Communication in Android. In
Proceedings of the 9th Annual International Conference on
Mobile Systems, Applications, and Services, 2011.

[18] J. Crussell, C. Gibler, and H. Chen. Andarwin: Scalable
detection of semantically similar android applications. In
Proceedings of the 18th European Symposium on Research
in Computer Security, 2013.

[19] M. Egele, D. Brumley, and C. K. Yanick Fratantonio. An
Empirical Study of Cryptographic Misuse in Android
Applications. In Proceedings of the 20th ACM Conference on
Computer and Communications Security, 2013.

[20] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS:
Detecting Privacy Leaks in iOS Applications. In Proceedings
of the 18th Annual Symposium on Network and Distributed
System Security, NDSS, 2011.

[21] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In Proceedings of the 9th
USENIX Symposium on Operating Systems Design and
Implementation, 2010.

[22] S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgartner,
and B. Freisleben. Why Eve and Mallory Love Android: An
Analysis of Android SSL (In)Security. In Proceedings of the
19th ACM Conference on Computer and Communications
Security, 2012.

[23] M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe
Exposure Analysis of Mobile In-App Advertisements. In
Proceedings of the 5th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, 2012.

[24] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic
Detection of Capability Leaks in Stock Android
Smartphones. In Proceedings of the 19th Network and
Distributed System Security Symposium, 2012.

[25] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang.
RiskRanker: Scalable and Accurate Zero-day Android
Malware Detection. In Proceedings of the 10th International
Conference on Mobile Systems, Applications and Services,
MobiSys, 2012.

[26] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song.
Juxtapp: A Scalable System for Detecting Code Reuse
Among Android Applications. In Proceedings of the 9th
DIMVA, 2012.

[27] N. Hardy. The Confused Deputy: (or why capabilities might
have been invented). ACM SIGOPS Operating Systems
Review, 22, October 1998.

http://www.aliyun.com/product/oss/
https://github.com/mssun/android-apps-crawler/
https://github.com/mssun/android-apps-crawler/
https://aws.amazon.com/articles/4611615499399490
https://aws.amazon.com/articles/4611615499399490
https://github.com/awslabs/aws-sdk-android-samples
https://github.com/awslabs/aws-sdk-android-samples
http://aws.amazon.com/sdkforandroid/
https://www.bugsense.com/
http://contagiominidump.blogspot.com/
https://www.saikoa.com/dexguard
http://azure.microsoft.com/en-us/documentation/articles/mobile-services-android-get-started/
http://azure.microsoft.com/en-us/documentation/articles/mobile-services-android-get-started/
http://azure.microsoft.com/en-us/documentation/articles/mobile-services-android-get-started/
https://code.google.com/p/javamail-android/
http://developer.android.com/tools/help/proguard.html
http://developer.android.com/tools/help/proguard.html
http://www.jondev.net/articles/Sending_Emails_without_User_Intervention_(no_Intents)_in_Android
http://www.jondev.net/articles/Sending_Emails_without_User_Intervention_(no_Intents)_in_Android
http://www.jondev.net/articles/Sending_Emails_without_User_Intervention_(no_Intents)_in_Android
https://code.google.com/p/smali/
http://aws.amazon.com/code/8872061742402990
http://mobile.awsblog.com/post/Tx2OC71PFCTC63E/Using-ProGuard-with-the-AWS-SDK-for-Android
http://mobile.awsblog.com/post/Tx2OC71PFCTC63E/Using-ProGuard-with-the-AWS-SDK-for-Android
http://mobile.awsblog.com/post/Tx2OC71PFCTC63E/Using-ProGuard-with-the-AWS-SDK-for-Android

[28] J. Hoffmann, M. Ussath, T. Holz, and M. Spreitzenbarth.
Slicing Droids: Program Slicing for Smali Code. In
Proceedings of the 28th Annual ACM Symposium on Applied
Computing, 2013.

[29] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall.
These Aren’t the Droids You’re Looking For": Retroffiting
Android to Protect Data from Imperious Applications. In
Proceedings of the 18th ACM Conference on Computer and
Communications Security, 2011.

[30] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. CHEX: Statically
Vetting Android Apps for Component Hijacking
Vulnerabilities. In Proceedings of the 19th ACM Conference
on Computer and Communications Security, 2012.

[31] M. Mitchell, G. Tian, and Z. Wang. Systematic Audit of
Third-Party Android Phones. In Proceedings of the 4th ACM
Conference on Data and Application Security and Privacy,
2012.

[32] M. Nauman, S. Khan, M. Alam, and X. Zhang. Extending
Android permission model and enforcement with
user-defined runtime constraints. In Proceedings of the 5th
ACM Symposium on Information, Computer and
Communications Security, 2010.

[33] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner. AdDroid:
Privilege Separation for Applications and Advertisers in
Android. In Proceedings of the 7th ACM Symposium on
Information, Computer and Communications Security, 2012.

[34] S. Shekhar, M. Dietz, and D. S. Wallach. Adsplit: Separating
smartphone advertising from applications. In Proceedings of
the 21th USENIX Security Symposium, 2012.

[35] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan.
SMV-HUNTER: Large Scale, Automated Detection of
SSL/TLS Man-in-the-Middle Vulnerabilities in Android
Apps. In Proceedings of the 21st Network and Distributed
System Security Symposium, 2014.

[36] N. Viennot, E. Garcia, and J. Nieh. A Measurement Study of
Google Play. In Proceedings of the 14th ACM International
Conference on Measurement and Modeling of Computer
Systems, 2014.

[37] F. Wei, S. Roy, X. Ou, and Robby. Amandroid: A Precise
and General Inter-component Data Flow Analysis
Framework for Security Vetting of Android Apps. In
Proceedings of the 21st ACM Conference on Computer and
Communications Security, 2014.

[38] M. Weiser. Program Slicing. In Proceedings of the 5th
international conference on Software engineering, 1981.

[39] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang. The Impact
of Vendor Customizations on Android Security. In
Proceedings of the 20th ACM Conference on Computer and
Communications Security, 2013.

[40] R. Xu, H. Saidi, and R. Anderson. Aurasium: Practical
Policy Enforcement for Android Applications. In
Proceedings of the 21th USENIX Security Symposium, 2012.

[41] M. Zhang and H. Yin. AppSealer: Automatic Generation of
Vulnerability-Specific Patches for Preventing Component
Hijacking Attacks in Android Applications. In Proceedings
of the 21st Annual Network and Distributed System Security
Symposium, 2014.

[42] M. Zhang and H. Yin. Efficient, Context-Aware Privacy
Leakage Confinment for Android Applications without
Firmware Modding. In Proceedings of the 9th ACM
Symposium on Information, Computer and Communications
Security, 2014.

[43] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou. Fast,
scalable detection of ‘piggybacked’ mobile applications. In
Proceedings of the 3rd ACM Conference on Data and
Application Security and Privacy, 2013.

[44] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. DroidMOSS:
Detecting Repackaged Smartphone Applications in
Third-Party Android Marketplaces. In Proceedings of the
2nd ACM Conference on Data and Application Security and
Privacy, 2012.

[45] Y. Zhou and X. Jian. Detecting passive content leaks and
pollution in android applications. In Proceedings of the 20th
Network and Distributed System Security Symposium, 2013.

[46] Y. Zhou and X. Jiang. Dissecting Android Malware:
Characterization and Evolution. In Proceedings of the 33rd
IEEE Symposium on Security and Privacy, 2012.

[47] Y. Zhou, K. Patel, L. Wu, Z. Wang, and X. Jiang. Hybrid
User-level Sandboxing of Third-party Android Apps . In
Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, 2015.

[48] Y. Zhou, K. Singh, and X. Jiang. Owner-centric Protection of
Unstructured Data on Smartphones . In Proceedings of the
7th International Conference on Trust and Trustworthy
Computing, 2014.

[49] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You, Get off

of My Market: Detecting Malicious Apps in Official and
Alternative Android Markets. In Proceedings of the 19th
Annual Symposium on Network and Distributed System
Security, NDSS, 2012.

[50] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming
Information-Stealing Smartphone Applications (on
Android). In Proceedings of the 4th International
Conference on Trust and Trustworthy Computing, 2011.

	Introduction
	Background and Threat Model
	Amazon AWS
	JavaMail Library
	Threat Model

	System Design
	Overview
	Select Candidate Apps
	Identify Data Sources
	Reconstruct Credentials
	Validate Credentials

	Evaluation
	Overall Results
	Email Credentials
	Amazon AWS Credentials
	App Developer's Security Practice
	Other Cloud Services

	Discussion
	Related Work
	Summary
	References

